Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89377
標題: Greenhouse gas emission methods to evaluate the different treatments of kitchen waste
以溫室氣體排放量評估廚餘最佳化處理方式之研究
作者: 廖英洲
Ying-Chou Liao
關鍵字: 廚餘
溫室氣體
養豬
堆肥
厭氧消化
Kitchen waste
GHGs
Swine feeding
Composting
Anaerobic digestion
引用: 一、中文部分 1.王郁萱(2008),「高溫廚餘厭氧氫醱酵程序控制與水解機制之研究」,國立成功大學環境工程學系碩士論文。 2.申永順(2012),「能源產業溫室氣體管理策略」講習會,經濟部能源局。 3.交通部中央氣象局(2013),臺中1981~2010年月均溫度,http://www.cwb.gov.tw/V7/service/notice/download/publish_20110923100320.pdf 4.行政院農業委員會(2013),畜產品價格查詢系統,http://agrapp. coa.gov.tw/agrPR-net/index.htm 5.行政院環境保護署(2013a),統計資料庫,http://210.69.101.110/epa/ stmain. jsp?sys=100 6.行政院環境保護署(2013b),廚餘養豬再利用,http://www.epa.gov.tw/ ch/artshow.aspx?busin=331&art=2007091616303618&path=6638 7.宋華聰(1999),「從我國養豬政策談我們如何面對豬瘟及口蹄疫」,中國畜牧雜誌,第30卷,第7期,第20-26頁。 8.李文智(1998),「家庭廚餘堆肥化處理」,環境教育季刊,36期,第4-7頁。 9.李立德、莊韻蓉、唐俊成、洪瑞敏、盧至人、邱士豪(2006),「廚餘生質能源化操作参數及效益評估」,中華民國環境工程學會2006廢棄物處理技術研討會。 10.李登元(1974),「家畜各論(下冊)」,臺灣書店。 11.阮國棟、林郁真、吳婉怡、林琮禧(2005),「新型生物反應槽掩埋場之設計及操作模式,全球化及近未來(Near Future)科技對環境管理之影響」,環保署科顧室年度自行研究計畫論文集。 12.周孟蓉(2011),「蛋雞糞處理及堆肥化過程對CO2、CH4及N2O釋出之影響」,國立中興大學土壤環境科學系所碩士論文。 13.林秋裕(1990),「固體廢棄物處理概論」,國彰出版社。 14.羋振明(1995),「廢棄物處理技術」,科技圖書股份有限公司。 15.袁紹英(1985),「堆肥的品質管制,固體廢棄物處理技術研討會論文輯」,行政院衛生署環境保護局編,第1-28頁。 16.財團法人船舶暨海洋產業研發中心(2013),船舶設計實績,http://www.soic.org.tw/ usddc3/chi/intro/intro_dm.asp 17.莊作權、楊明富(1992),「水稻-田菁-玉米輪作制度下施用堆肥對土壤肥力之影響」,中國農業化學會誌,第30期,第553-568頁。 18.陳得財(1993),「餿水在肉豬飼養之應用」,現代養豬,第2卷,第15期,第46-52頁。 19.陳義雄、陳文賢(1997),「餿水豬肉品質之探討」,中國畜牧學會,第26卷,第1期,第67-76頁。 20.陳鴻烈、周孟融、蔡大偉(2013),「運用綠建築指標於永續農村發展之研究」,社團法人中華水土保持學會102年度年會。 21.黃亦聖(2010),「廚餘厭氧醱酵與資源化技術探討」,元培科技大學生物技術研究所碩士論文。 22.黃孝信(2005),「堆肥技術與設備手冊及案例彙編」,經濟部工業局編印。 23.楊盛行、林正芳、王繼國(2003),「廢棄物處理與再利用」,國立空中大學用書。 24.經濟部能源局(2013),我國燃料燃燒二氧化碳排放統計與分析。 25.臺中市政府環境保護局(2011),「臺中市推動廚餘回收再利用專區營運管理及操作維護計畫」。 26.臺中政府環境保護局(2013),「臺中市廚餘生質能源化評估及再利用計畫」。 27.臺灣中油股份有限公司油品行銷事業部(2010),海運重柴油物質安全資料表,http://www.cpc.com.tw/big5_bd/tmtd/files/%E6%B5%B7 %E9%81%8B%E9%87%8D%E6%9F%B4%E6%B2%B9MSDS.pdf 28.歐陽嶠暉(2007),下水道工程學,長松文化。 29.鄧耀宗、黃伯恩(1993),「臺灣永續農業之現況與展望,永續農業研討會專集」,臺中區農業改良場,第1-8頁。 30.謝幼屏(2000),「穀物運送貨櫃化對港口運作之影響分析」,交通部運輸研究所。 31.謝宗廷、馬振基(2001),「新穎環境材料-綠色高分子」,化工資訊月刊,第66-73頁。 32.謝錦松、黃正義(2001),「固體廢棄物處理」,高立圖書出版。 二、英文部分 1.Alexander, M., (1977). Introduction to soil microbiology. Wiley. New York. 2.Alvarez, J. A., L. Otero, J. M. Lema, (2010). A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresource Technology. 101(4):1153–1158. 3.Angelidaki, I., K. Boe, L. Ellegaard, (2005). Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants. Water Science and Technology. 52(1–2):189–194. 4.Aoshima, M., M. S. Pedro, S. Haruta, L. Ding, T. Fukada, A. Kigawa, T. Kodama, M. Ishiii, Y. Igarashi, (2001). Analyses of microbial community within a composter operated using household garbage with special reference to the addition of soybean oil. Journal of Bioscience and Bioengineering. 91(5):456–461. 5.Arnaiz, C., J. C. Gutierrez, J. Lebrato, (2006). Biomass stabilization in the anaerobic digestion of wastewater sludges. Bioresource Technology. 97:1179–1184. 6.Banks, C. J., M. Chesshire, A. Stringfellow, (2008). A pilot-scale trial comparing mesophilic and thermophilic digestion for the stabilisation of source segregated kitchen waste. Water Science and Technology. 58(7):1475–1480. 7.Banks, C. J., M. Chesshire, S. Heaven, R. Arnold, (2011). Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresource Technology. 102:612–620. 8.Banks, C., J. Z. Wang, (1999). Development of a two phase anaerobic digesterfor the treatment of mixed abattoir wastes. Water Science and Technology. 40(1):69–76. 9.Bertoldi, D., M. G. Vallint, A. Perand, F. Zucconi, (1985). Technological aspects of composting including modeling and microbiology. In: J. K. R. Gasser (ed.) Composting of agricultural and other wastes. Elsevier Applied Science Publishers. London. pp. 27–41. 10.Bitton, G., (1994).Wastewater microbiology. Wiley-Liss. New York. 11.Bouallagui, H., H. Lahdheb, E. Romdan, B. Rachdi, M. Hamdi, (2009). Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. Journal of Environmental Management. 90:1844–1849. 12.Bryant, M. P., E. A. Wolin, M. J. Wolin, R. S. Wolfe, (1967). Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Archiv fur Mikrobiologie. 59(1–3):20–31. 13.BTA, (2009). BTAR Hydromechanical Pre-Treatment. http://www.bta-international.de/en/der-bta-prozess/der-bta-prozess0.html. 14.Cavinato, C., F. Fatone, D. Bolzonella, P. Pavan, (2010). Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: Comparison of pilot and full scale experiences. Bioresource Technology. 101:545–550. 15.Chen, T. C., C. F. Lin, (2008).Greenhouse gases emissions from waste management practices using life cycle inventory model. Journal of Hazardous Materials. 155:23–31. 16.Chen, Y., Y. Inbar, (1993). Chemical and spectroscopical analyses of organic matter transformations during composting in relation to compost maturity. In: Hoitink, H. A. J. & Keeneer, H. M. (eds.): Science and engineering of composting: design, environmental, microbiological and utilization aspects. International Composting Research Symposium, Columbus, Ohio. USA. pp 551–600. 17.Chenxi, L., P. Champagne, B. C. Anderson, (2011). Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions. Bioresource Technology. 102(20):9471–9480. 18.Cluff, R. (2003). Specifics on Canada composting plants. Toronto, Canada. 19.Cuetos, M. J., X. Gomez, M. Otero, A. Moran, (2008). Anaerobic digestion of solid slaughterhouse waste (SHW) at laboratory scale: Influence of co-digestion with the organic fraction of municipal solid waste (OFMSW). Biochemical Engineering Journal. 40(1):99–106. 20.Das, S. K., G. S. Reddy, K. L. Sharma, K. P. R. Vittal, B. Venkateswarlu, M. N. Reddy, Y. V. R. Reddy, (1993). Prediction of nitrogen availability in soil after crop residue incorporation. Fertilizer Research. 34:209-215. 21.Debosz, K., S. O. Petersen, L. K. Kube, P. Ambus, (2002). Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Applied Soil Ecology. 19(3):237–248. 22.El Hadj, T. B., S. Astals, A. Gali, S. Mace, J. Mata–Alvarez, (2009). Ammonia influencein anaerobic digestion of OFMSW. Water Science and Technology. 59(6):1153–1158. 23.Encyclopadia Britannica, Inc., (2013). carbon-cycle. http://global. britannica.com/EBchecked/topic/1219977/carbon-sequestration. 24.Fricke, K., H. Santen, R. Wallmann, A. Huttner, N. Dichtl, (2007). Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Management. 27(1):30–43. 25.Goberna, M., M. A. Schoen, D. Sperl, W. Wett, H. Insam, (2010). Mesophilic and thermophilic co-fermentation of cattle excreta and olive mill wastes in pilot anaerobic digesters.Biomass and Bioenergy. 34:340–346. 26.Golueke, C. G., (1977). Biological reclamation of solid waste. Rodale Press. USA. 27.Gomez, X., M. J. Cuetos, J. Cara, A. Moran, A. I. Garcia, (2006). Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes: Conditions for mixing and evaluation of the organic loading rate. Renewable Energy. 31(12):2017–2024. 28.Haga, K., (1991). Production of compost from organic wastes. Extension Bulletin. 311:1–18. 29.Harada, Y., (1990). Composting and application of animal wastes. Extension Bulletin. 311:19–31. 30.Hartmann, H., B. K. Ahring, (2005). A novel process configuration for anaerobic digestion of source-sorted household waste using hyper-thermophilic post-treatment. Biotechnology and Bioengineering. 90(7):830–837. 31.Hellebrand, H. J., (1998). Emission of nitrous oxide and other trace gases during composting of grass and green waste. Journal of Agricultural Engineering Research. 69:365–375. 32.Heitman, H., C. A. Perry, L. K. Gamboa, (1956). Swine feeding experiments with cooked residential garbage. Journal of Animal Science. 15(4):1072–1077. 33.Ike, M., D. Inoue, T. Miyano, T. T. Liu, K. Sei, S. Soda, S. Kadoshin, (2010). Microbial population dynamics during startup of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project. Bioresource Technology. 101(11):3952–3957. 34.IPCC, (2006). 2006 IPCC guidelines for national greenhouse gas inventories. Japan. 35.Kelleher, M., (2007). Anaerobic digestion outlook for MSW streams. BioCycle. 48(8):51. 36.Khalid, A., M. Arshad, M. Anjum, T. Mahmood, L. Dawson, (2011). The anaerobic digestion of solid organic waste. Waste Management. 31:1737–1744. 37.Kuo, W. C. W., (2012). How to promote the application of kitchen waste-based bioenergy in Taiwan. International workshop on kitchen waste-based bioenergy. Taichung, ROC. 38.Laos, F., M. J. Mazzarino, I. Walter, L. Roselli, (1998). Composting of fish waste with wood by-products and testing compost quality as a soil amendment: experiences in the Patagonis Region of Argentina. Compost Science & Utilization. 6(1):59–66. 39.Lettinga, G., A. F. M. van Velsen, S. W. Hobma, W. de Zeeuw, A. Klapwijk, (1980). Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering. 22(4):699–734. 40.Levisa, J. W., M. A. Barlaz, N. J. Themelis, P. Ulloa, (2010). Assessment of the state of food waste treatment in the United States and Canada. Waste Management. 30(8-9):1486–1494. 41.Li, Y., S. Y. Park, J. Zhu, (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews. 15(1):821–826. 42.Lo, H. M., T. A. Kurniawan, M. E. T. Sillanpaa, T. Y. Pai, C. F. Chiang, K. P. Chao, M. H. Liu, S. H. Chuang, C. J. Banks, S. C. Wang, K. C. Lin, C. Y. Lin, W. F. Liu, P. H. Cheng, C. K. Chen, H. Y. Chiu, H. Y. Wu, (2010). Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresource Technology. 101:6329–6335. 43.MacGregor, S. T., F. C. Miller, K. M. Psarianos, M. S. Finstein, (1981). Composting process control based on interaction between microbial heat output and temperature. Applied and Environmental Microbiology. 41(6):1321–1330. 44.Mackenzie, F. T., J. A. Mackenzie, (1998). Our changing planet: an introduction to earth system science and global environmental change. Prentice Hall. New Jersey. 45.Martin-Gonzalez, L., L. F. Colturato, X. Font, T. Vicent, (2010). Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield. Waste Management. 30(10):1854–1859. 46.Mata-Alvarez, J. (ed.), (2003). Biomethanization of the organic fraction of municipal solid wastes. IWA publishing. London. 47.Mata-Alvarez, J., S. Mace, P. Llabres, (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology. 74(1):3–16. 48.McInerney, M. J., M. P. Bryant, R. B. Hespell, J. W. Costerton, (1981). Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Applied and environmental microbiology. 41(4):1029–1039. 49.Mickinley, V. L., J. R. Vestal, (1985). Microbial activity in composting. BioCycle. 26:39–43. 50.Min, F., J. W. C. Wong, M. H. Wong, (1999). Review on evaluation of compost maturity and stability of solid waste. Shanghai Environmental Sciences. 18(2):91–93. 51.Nakamura, S., (2006). Kyoto eco energy project. The Monthly Journal of Global Environment. 9:112–113. 52.NASA(2013), Greenhouse Gas (GHG) Management, http://www.nasa.gov/offices/emd/home/ggm.html. 53.Neilsen, H. B., I. Angelidaki, (2008). Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresource Technology. 99(17):7995–8001. 54.Neiva Correia, C., F. Vaz, A. Torres, (2008). Anaerobic digestion of biodegradable waste-operational and stability parameters for stability control. In: 5th IWA International Symposium on AD of Solid Wastes and Energy Crops. Tunisia. 55.Paillat, J. M., P. Robin, M. Hassouna, P. Leterme, (2005). Predicting ammonia and carbon dioxide emissions from carbon and nitrogen biodegradability during animal waste composting. Atmospheric Environment. 39:6833–6842. 56.Parawira, W., M. Murto, R. Zvauya, B. Mattiasson, (2004). Anaerobic batch digestion of solid potato waste alone and incombination with sugar beet leaves. Renewable Energy. 29(11):1811–1823. 57.Rittmann, B. E., D. Jackson, S. L. Storck, (1988). Potential for treatment of hazardous organic chemicals with biological processes. Biotreatment systems. 3:15–64. 58.Sahm, H., (1984). Anaerobic wastewater treatment. Advances in Biochemical Engineering/Biotechnology. 29:83–115. 59.Smars, S., L. Gustafsson, B. Beck-Friis, H. Jonsson, (2002). Improvement of the composting time for household waste during an initial low pH phase by mesophilic temperature control. Bioresource Technology. 84(3):237–241. 60.Sommerfeldt, T. G., C. Chang, T. Entz, (1988). Long-term annual manure applications increase soil organic matter and nitrogen, and decrease carbon to nitrogen ratio. Soil Science Society of America Journal. 52(6):1668–1672. 61.Sosnowski, P., A. Wieczorek, S. Ledakowicz, (2003). Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Advances in Environmental Research. 7(3):609–616. 62.Speece, R. E., (1983). Anaerobic biotechnology for industrial wastewater treatment. Environmental Science and Technology. 17(9):416A–427A. 63.Sterritt, R. M., J. N. Lester, (1988). Microbiology for environmental and public health engineers. E. & F.N. Spon. New York. 64.Switzenbaum, M. S., (1983). Anaerobic treatment of wastewater: Recent developments. ASM News. 49:532–536. 65.Szegi, J., (1988). Cellulose decomposition and soil fertility. Akademiai Kiado. Hungary. 66.Tejada, M., J. L. Gonzalez, (2003). Effects of the application of a compost originating from crushed cotton gin residues on wheat yield under dryland conditions. European Journal of Agronomy. 19(2):357–368. 67.Thamsiriroj, T., J. D. Murphy, (2011). Modelling mono-digestion of grass silage in a 2-stage CSTR anaerobic digester using ADM1. Bioresource Technology. 102:948–959. 68.The University of Waikato, (2013). Nitrogen cycle.http://www.waikato. ac.nz/fass/about/staff/maximus/concept-diagrams. 69.Toerien, D. F., W. H. J. Hattingh, (1969). Anaerobic digestion I. The microbiology of anaerobic digestion. Water Research. 3(6):385–416. 70.Tsilemou, K., D. Panagiotakopoulos, (2006). Approximate cost functions for solid waste treatment facilities. Waste Management and Research, 24(4):310–322. 71.USEPA, (2002). Solid waste management and greenhouse gases. A life-cycle assessment of emissions and dink (2nd ed.) US Environmental Protection Agency. Washington, DC. 72.USEPA, (2008).Municipal solid waste in the United States: 2007 facts and figures. EPA 530-R-08-010. Office of Solid Waste and Emergency Response, Washington, DC. 73.Vanotti, M. B., A. A. Szogi, C. A. Vives, (2008). Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms. Waste Management. 28:759–766. 74.Wang, Z. J., C. J. Banks, (2003). Evaluation of a two stage anaerobic digester for the treatment of mixed abattoir wastes. Process Biochemistry. 38(9):1267–1273. 75. Yoneyama, Y., K, Takeno, (2002). Co-digestion of domestic kitchen waste and night soil sludge in a full-scale sludge treatment plant. Water Science and Technology. 45(10):281–286. 76.Yu, S., O. G. Clark, J. J. Leonard, (2008). A statistical method for the analysis of nonlinear temperature time series from compost. Bioresource Technology. 99:1886–1895. 77.Zhang, L., Y. W. Lee, D. Jahng, (2011). Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresource Technology. 102:5048–5059.
摘要: 本文研究以焚化、養豬、堆肥及厭氧消化等方式處理廚餘所產生之溫室氣體(Green House Gas, GHGs)排放量,其中廚餘組成及物化特性是以臺中市實際調查資料為主,並以政府間氣候變遷專家小組(Intergovernmental Panel on Climate Change, IPCC)所公佈之排放因子來估算各種不同廚餘處理方式所產生的GHGs排放量,並與其他學者所研究之GHGs排放量比較,以瞭解不同方式處理廚餘所產生之溫室氣體排放量。 於本研究中發現,每1 Gg(Gigagram,千噸)廚餘經焚化處理後所排放之GHGs為0.51 Gg;廚餘養豬所產生之GHGs排放量則為0.055 Gg;以堆肥方式處理廚餘,則可分為操作良好與操作不良等兩種情形,其排放量分別為0.0475 Gg與0.1101 Gg;而以厭氧消化方式處理廚餘,處理後之氣體也可分為無回收及有回收,前者GHGs為排放1.0735 Gg,後者其GHGs排放量為0,為各處理方式中GHGs排放量最低者,其對環境之負面影響亦最低。另本研究又將養豬處理方式分為廚餘養豬及飼料養豬比較,並假設腸道發酵、糞便處理及陸地運輸GHGs排放皆相同,僅計算進口飼料海運部分,計算結果為每1 Gg廚餘可替代0.1306 Gg飼料進口及減少0.0183 Gg之GHGs排放,並可以降低1.23×106元成本。 本研究計算求得GHGs排放最低者為厭氧消化,所以厭氧消化為廚餘最佳化處理方式。
The research tried to calculate the greenhouse gas (GHGs) emissions of kitchen waste treatments of incineration, swine feeding, composting and anaerobic digestion. We based on the kitchen waste data in Taichung to estimate the emissions by the method of Intergovernmental Panel on Climate Change (IPCC) and the results were compared with the current literatures. The calculation results showed that incineration process would produce 0.51 Gg GHGs and swine feeding was 0.055 Gg per Gg kitchen waste. The composting process depended on operation condition to result in 0.0475 Gg per Gg kitchen waste while in well operation and 0.1101 Gg in bad practice as the local did. If the gas reutilization was not executed in anaerobic digestion, it produced 1.0735 more Gg per Gg kitchen waste. On the contrary no GHGs released if the gas reuse was included in the process, was the least adversed effects on environment. For the swine feed method, there were two types of feeding sources: kitchen waste and artificial fodder. Under the hypothesis of GHGs emissions included the fermentation, manure management and land transportation for the two feed, we estimated the difference of the emissions generated from the shipping transportation of crop imported. The comparison results showed that 1 Gg kitchen waste could subtitute 0.1306 Gg fodder, decreased 0.0183 Gg emission and cut the cost of 1.23×106 NT dollar per Gg kitchen waste. We concluded anaerobic digestion proccese had the lowest GHGs emission, was the best alternative of kitchen waste treatment.
URI: http://hdl.handle.net/11455/89377
其他識別: U0005-2901201412321000
文章公開時間: 2014-02-06
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.