Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89396
標題: Three-Dimensional Analysis of Piled-Raft Foundation in Deep Excavation of Taipei Metropolitan
台北都會區深開挖樁筏基礎之力學行為三維數值分析
作者: 陳欣佑
Sin-Yu Chen
關鍵字: 深開挖
有樁-筏基
基樁靜載重試驗
平面應變比
筏基尺寸因子
樁基排列因子
樁基尺寸因子
筏基厚度
deep excavation
piled-raft foundation
static pile loading test
plane strain ratio
raft size factor
pile arrangement factor
pile size factor
raft thickness
引用: [1] A. V. Mendonca, J. B. Paiva (2003), An elastostatic FEM/BEM analysis of vertically loaded raft and piled raft foundation, Engineering Analysis with Boundary Elements 27, 919–933 [2] Brown P.T. (1969), Numerical Simulation of Uniformly Loaded Circular Rafts on Elastic Layers of Finite Depth, Geotechnique, Vol. 19, No. – 2, 301 – 306. [3] Butterfield, R. and Banerjee, P.K. (1971), 'The Elastic Analysis of Compressible Piles and Pile Groups', G?otechnique 21, No. 1,43-60 [4] Butterfield, R. and Banerjee, P.K. (1971), 'The Elastic Analysis of Compressible Piles and Pile Groups', G?otechnique 21, No. 1,43-60 [5] Cheung, Y. K., Tham, L. G. and Guo D. J. (1988), Analysis of pile group by infinite element layer method. Geotechnique, 38/3:415-431. [6] Clancy P, Randolph MF. (1993), An approximate analysis procedure for piled raft foundations. Int J Numer Anal Meth Geomech, 17:849–69. [7] Clancy, P. and Randolph, M.F. (1993), 'An Approximate Analysis Procedure for Piled Raft Foundations', Int. J.Numer. and Analytical Methods in Geomech., London, 17(12), 849-869. [8] Dang Dinh Chung Nguyen, Seong-Bae Jo, Dong-Soo Kim (2012),Design method of piled-raft foundations under vertical load considering interaction effects, Computers and Geotechnics 47; 16–27 [9] Davis, E.H. and Poulos H.G. (1972), 'The Analysis of Piled Raft Systems', Aust. Geomechs.J. ,G2: 21-27 [10] Desai, C. S. (1974), Numerical design and analysis for piles in sands. Journal of geotechnical engineering, ASCE, 100/6:613-635. [11] E. Bourgeois , P. de Buhan , G. Hassen (2012), Settlement analysis of piled-raft foundations by means of a multiphase model accounting for soil-pile interactions, Computers and Geotechnics 46; 26–38 [12] El Sharnouby, B. and Novak, M. (1990), Stiffness constants and interaction factors for vertical response of pile groups. Canadian geotechnical journal, 27:813-822. [13] El Sharnouby, B. and Novak, M. (1990), Stiffness constants and interaction factors for vertical response of pile groups. Research report GEOT-8-90, ISSN 0847-0626. University of Ontario, London. [14] Fa-Yun Liang, Long-Zhu Chen, Xu-Guang Shi (2003), Numerical analysis of composite piled raft with cushion subjected to vertical load, Computers and Geotechnics 30; 443–453 [15] Guo, D. J., Tham, C. G. and Cheung, Y. K. (1987), Infinite layer for the analysis of a single pile. Computer and geotechnics, 3:229-249. [16] H.G. Poulos, J.C. Small, H. Chow (2011), Piled Raft Foundations for Tall Buildings, Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol 42 No.2 June 2011 ISSN 0046-5828 [17] Hooper, J.A. (1973), 'Observations on the Behavior of a Piled-Raft Systems', Geotechnique, 28 (1): 65-83. [18] Jaeyeon Cho, Jin-HyungLee, SangseomJeong, JaehwanLee (2012), The settlementbehaviorofpiledraftinclaysoils, Ocean Engineering53; 153–163 [19] JinHyung Lee, Youngho Kim, Sangseom Jeong (2010), Three-dimensional analysis of bearing behavior of piled raft on soft clay, Computers and Geotechnics 37; 103–114 [20] Katzenbach, R., Arslan, U. & Moormann, Chr. (1999a), Piled raft foundation projects in Germany, in J. A. Hemsley (ed.), Design Applications of Raft Foundations, Thomas Telford Ltd., pp. 323–91. [21] Katzenbach, R., Schmitt, A. & Turek, J. (1999b), Cooperation between the Geotechnical and Structural Engineers — Experience from Projects in Frankfurt, in COST Action C7, Soil–Structure Interaction in Urban Civil Engineering, Proceedings of theWorkshop in Thessaloniki, 1–2 October 1999, EUR 19206, ISBN 92-828-9533-5, pp. 53–65. [22] M. Rifat Kahyaoglu, G?khan Imancli, A. Ugur Ozturk, Arif S. Kayalar (2009), Computational 3D finite element analyses of model passive piles, Computational Materials Science 46; 193–202 [23] M. Tariq Amin Chaudhary (2007), FEM modelling of a large piled raft for settlement control in weak rock, Engineering Structures 29; 2901–2907 [24] Mandolini, A., Russo, G., Viggiani, C. (2005), 'Pile foundations: experimental investigations, analysis and design', State of the Art Report at XVI ICSMFE, Osaka, Japan, vol. 1, pp. 177-213. [25] Pastsakorn Kitiyodom, Tatsunori Matsumoto (2003), A simplified analysis method for piled raft foundations in non-homogeneous soils, International Journal for Numerical and Analytical Methods in Geomechanics - INT J NUMER ANAL METH GEOMECH , vol. 27, no. 2, pp. 85-109 [26] Poulos HG, Davis EH. (1980) Pile foundation analysis and design. New York: Wiley [27] Poulos HG, Davis EH. (1980), Pile foundation analysis and design. New York: Wiley [28] Poulos HG. (1989) Pile behaviour : theory and application. Geotechnique, 36(3):365–415. [29] Poulos, H. G. (2001), Piled raft foundations : design and applications, Geotechnique 51(2): 95-113 [30] Poulos, H.G. (1991), 'Analysis of Piled Strip Foundations', Proc. of the 7th Int. Con. on Computer Methods and Advances in Geomechanics/Cairns/6-10 May 1991 : Computer methods and advances in geomechanics. Rotterdam Balkema. 183-191. [31] Poulos, H.G. (1994), 'An Approximate Numerical Analysis of Pile- Raft Interaction', Int. J. Numer. And Analytical Methods in Geomech., London, 18(2), 73-92. [32] R. Katzenbach, A. Schmitt & J. Turek (2005), Computer-Aided Civil and Infrastructure Engineering 20; 221–229 [33] Randolph MF. (1994), Design methods for pile groups and piled rafts. S.O.A report, 13 ICSMFE, New Delhi, vol. 5; p. 61–82. [34] Randolph, M.F. (1983), 'Design of Piled Raft Foundations' Proc. Int. Symp. on Recent Developments in Laboratory and Field Tests and Analysis of Geotechnical Problems, Bangkok, pp 525-537. [35] Randolph, M.F. (1994a), 'Design Methods for Pile Groups and Piled Rafts' Proc.XIII ICSMFE, New Delhi, Vol.5, 61-82, Rotterdam Balkema. [36] Randolph, M.F., Clancy P. (1994b), 'Design and Performance of a Piled Raft Foundation', Proceedings on Settlement, ASCE< Geotechnical Special Publications 40. pp. 1315-1336. [37] Russo, G. and Viggiani, C. (1997), 'Some Comments on the Analysis of Piled Rafts'. Proceedings 14th ICSMFE, Hamburg, vol 4 pp 2263 – 2264, Rotterdam Balkema. [38] Shahu JT, Madhav MR, Hayashi S. Analysis of soft groundgranular pile-granular mat system. Computers and Geotechnics 2001;27(1):45–62. [39] Silva, R.D.G. (2009). Combined Pile Raft Foundation, Master degree dissertation, Instituto Superior T?cnico. [40] Ta, L. D. and Small J. C. (1995), Finite layer analysis of pile groups in layered soils. Proc. of the Numerical Models in geomechanics, NUMOG V, 577-582. [41] Wong IH, Chang MF, Cao XD. (2000) Raft foundations with disconnectedsettlement–reducing piles. In: Hemsley JA, editor. Design Application ofRaft Foundations, Telford. p. 469–86. [42] Xu KJ, Poulos HG. (2000), General elastic analysis of piles and pile groups. Int J Numer Anal Meth Geomech, 24:1109–38. [43] Youngho Kim, Sangseom Jeong (2011), Analysis of soil resistance on laterally loaded piles based on 3D soil–pile interaction, Computers and Geotechnics 38; 248–257 [44] Zaman MM, Issa A, Kukreti AR (1988), Analysis of circular plate-elastic half-space interaction using an energy approach. Appl Math Model;12:285–92. [45] Zeevaert L. (1957), Compensated friction-pile foundation to reduce settlement of buildings on highly compressible volcanic clay of Mexico City. In: Proc. 4th ICSMFE, vol. 2
摘要: 現今各國都會區高樓建築案,多採用有樁-筏基承載大樓之荷重。然而,有樁-筏基各參數之研究卻少之又少,因此各工程在進行有樁-筏基之設計時,皆忽略筏基的承載貢獻,並視載重全為群樁所承擔,以致其設計不夠經濟。本文採用「台北國際金融中心(台北101)新建工程塔樓區基樁靜載重拉力/壓力試驗」,拉拔樁P039、P112及壓力樁P241、P532之現場載重試驗結果,以及台北都會區典型土層,進行樁筏系統承載之研究。文中採用三維有限元素程式Plaxis 3D進行模擬。 首先,利用Plaxis 3D於樁基靜載重試驗之模擬結果與現地量測值比較,決定樁-土介面及土層參數,爾後再使用於有樁-筏基之承載模擬。對樁基靜載重試驗之模擬而言,載重-沉陷曲線(P~uz曲線)及載重傳遞(Q~z曲線)之模擬值與量測值相當吻合,並可得知採用莫爾-庫倫土壤模式(Mohr-Coulomb Model)及埋置樁(embedded pile)結構元素,進行拉拔及壓力樁之靜載重試驗模擬非常適宜及準確。 本文為探討不同參數(如筏厚度、樁距、樁長等)對有樁-筏基於台北都會區典型土層中,力學行為之影響,提出有樁-筏基之主要影響因子:(a) 筏基尺寸因子(Raft Size Factor) (b) 樁基排列因子(Pile Arrangement Factor) (c) 樁基尺寸因子(Pile Size Factor) (d) 筏基厚度(Raft Thickness),並進行有樁-筏基於載重時沉陷及變形行為討論。在不同條件下,可得到各影響因子對於有樁-筏基的沉陷、彎矩、載重分佈、樁筏間載重分擔機制之影響。此外,亦討論有樁-筏基深開挖中,利用各筏基尺寸因子所模擬出之平面應變比(Plane Strain Ratio, PSR),進行角隅效應之分析。 由分析結果可以得知,在進行有樁-筏基設計考量時:(a) 當筏基形狀由長方形漸趨轉為正方形(RSF = 0.4 ? 0.67 ? 1.0) 時,筏基沉陷槽之下陷程度增加,但樁基與筏基之承載比變化不大;(b) PAF值之增加(即為樁基排列由12?12(PAF=2) ?8?8(PAF=3) ?6?6(PAF=4)時),雖可達群樁經濟設計之目的,但終將導致最大沉陷量(?v)max相對增加之不良後果;(c) 隨有樁-筏基之樁長LP由35 m (PSF?17.5)增加為LP?45及55 m (亦即PSF?22.5及27.5)時,沉陷槽之下陷程度隨之減少,但由於基樁產生表面摩擦阻抗之深度維持定值(15~20 DP),故對於樁基與筏基之承載比影響不大;(d) 隨有樁-筏基之筏基厚度TR由1 m ? 2 m ? 3 m逐漸增厚時,其筏基版之勁度及自重大幅增加,此結果將導致筏-土界面之基礎反力顯得為不足道,並使垂直均佈荷重更易於直接傳遞至其下方之群樁。
Piled-raft foundation has recently been widely adopted to transmit the load of the superstructures in many metropolitan construction projects. However, the projects designers mostly neglect the function of the raft part since the design procedure for the piled-raft foundation is yet to be evolved. By doing so, the whole design of the piled-raft foundation becomes uneconomic as the pile group is considered to carried the total structural load. This study select four situ testing piles results of Taipei International Financial Center - Static pile loading test report: two extension testing piles, P039 and P112, two compression testing piles, P241 and P532 and the typical Taipei metropolitan soil profile to conduct the three-dimensional numerical simulation of the piled-raft foundation by the finite element method (FEM). In order to determine the parameters of the soil profile and the pile-soil interaction, the static pile loading test simulation results from Plaxis 3-D software are used to compare with the in-situ results. For the simulations of the static pile loading test, the simulation results of load-settlement curve (P~uz curve) and load-transfer curve (Q~z curve) have good agreements with the in-situ measurements. This result shows that the selection of Mohr-Coulomb Model and embedded pile structural material in 3-D simulation of static pile loading test is appropriate and adequate. To investigate the mechanical behaviors (settlement and deformation) infected by different parameters of the piled-raft foundation (raft thickness, pile spacing, pile diameter…) in Taipei metropolitan, four interaction factors are determined into discussion: (a) Raft Size Factor (b) Pile Arrangement Factor (c) Pile Size Factor (d) Raft Thickness. Under different conditions, the settlement of the raft, pile moment, load distribution of piles and the load sharing mechanisms between raft and pile group in the piled-raft foundation can be obtained from the 3-D numerical simulation results. Also, the corner effect and the Plane Strain Ratio in different RSF value are discussed in this study. The 3-D numerical simulation results of the piled-raft foundation show: (a) When the shape of a rectangle raft turn into square, the settlement of the raft increases but the variation of the load carrying ratio of raft and pile group change slightly. (b) Though the increase of the PAF value (as the pile arrangement 12?12?8?8?6?6) can obtain the economical design, the settlement of the raft would also increase. (c) With the increase of the PSF value (as pile length LP = 35 m ? 45 m ? 55 m), the settlement of the raft would decrease but the variation of the load carrying ratio of raft and pile group also change slightly. (d) The increase of the raft thickness (TR ? 1 m ? 2 m ? 3 m) would cause the raft part transfers the vertical surface load more directly into pile group.
URI: http://hdl.handle.net/11455/89396
其他識別: U0005-2811201416200282
文章公開時間: 2017-08-31
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.