Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89419
標題: Rainfall monitoring and seepage induced slope stability analyses of You-Ye-Lin Landslide
幼葉林地滑地降雨監測及滲流穩定性數值分析
作者: 洪祖健
Tzu-Jian Hung
關鍵字: 地滑地
數值分析
降雨滲流
體積含水量
安全係數
設計雨型
土壤含水量監測時域反射儀(TDR)
位移率
landslide
numerical analysis
rainfall-induced seepage
volumetric water content
factor of safety
design rainfall pattern
displacement rate
time domain reflectometry (TDR)
引用: 參考文獻 1. Abramson, L. W., Lee, T. S., Sharma, S., and Boyce, G. M. (1996), 'Slope Stability and Stabilization Methods', John Wiley and Sons, Inc., New York, pp.629. 2. Anderson, S. A., and Sitar, N. (1995), 'Analysis of Rainfall Induced Debris Flow', Journal of Geotechnical Engineering, ASCE, 121(7):544-552. 3. Arya, L.M. and Paris, J.F. (1981), 'A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data', Soil Science Society of America Journal, 45:1023-1030. 4. Aubertin, M., Mbonimpa, M., Bussiere, B., and Chapuis, R. P . (2001), 'A physically-based model to predict the water retention curve from basic geotechnical properties', Submitted to the Canadian Geotechnical Journal for publication. 5. Bodman, C. B. and D. E. Johnson and W. H. Kruskal (1958), 'Influence of VAMA and depth of rotary hoeing infiltration of irrigation water', Soil Sci. Am. Rroc. 22:463-468. 6. Brand, E.W. (1984), 'State-of-the-art Report of Landslides in Southeast Asian', Proc. 4th International Symosium on Landslides, Toronto, Canada, pp17-37. 7. Broms, B.B. and Wong. K.S. (1991), 'Landslides. Chapter 11 in Foundation Engineering Handbook' Van Norstand Reinhold, New York, pp410-446. 8. Burdine, N.T. (1953), 'Relative Permeability Calculations from Pore - Size Distribution Data', Trans. Am. Inst. Min. Metall. Pet. Eng., 198, pp71-77. 9. Chia-Cheng Fan, and Chin-Fu Hsiao. (2012), 'Role of topography in the behavior of the matric suction of unsaturated fill slopes', Bull Eng Geol Environ 71:61-69. 10. Childs, E. C., and N. Collis-George. (1950a), 'The permeability of porous materials', Proc. R. Soc., London A201:392-405. 11. Childs, E. C., and N. Collis-George. (1950b), 'Movement of Moisture in unsaturated soils', Trans. Int, Congr. Soil Sci., Amsterdam I-1-4. 12. Chow, V. T. (1951), 'A general formula for hydrologic frequency analysis', Transactions, American Geophysical Union, 32(2):231-237. 13. Dakshanamurthy, V., Fredlund, D. G., and Rahardjo, H. (1984), 'Coupled three-dimensional consolidation theory of unsaturated porous media', Proceedings of the Fifth International Conference on Expansive Soils, Adelaide, Australia May 21-23, pp.99-104. 14. Dalton, F.N., Herkelrath, D.S., and Rhoades, J.D. (1984), 'Time Domain Reflectometry: Simultaneous Measurements of Soil Water Content and Electrical Conductivity with a Single Probe', Science, Vol. 224,pp.989-990. 15. Dowding, C.D. (2002), 'Geo-Measurements with Metallic TDR Cable Technology for Infrastructure Surveillance', Transportation Research Board, 79th Annual Meeting, Paper No. 00531. 16. Fredlund, D. G. and Rahardjo, H. (1993), 'Soil Mechanics for Unsaturated Soils', John Wiley & Sons, Inc., New York, NY. 17. Fredlund, D. G. and Xing, A. (1994), 'Equations for the Soil-Water Characteristic Curve', Canadian Geotechnical Journal, 31:521-532. 18. Green, R. E. and Corey, J. C. (1971), 'Calculation of Hydraulic Conductivity : A Further Evaluation of Some Predictive Methods', Soil. Sci. Am. 35:3-8. 19. Harrison, B., Blight, G., Rahardjo, H., Toll, D., Leong, E. (2000), 'The Use of Indicator Tests to Estimate the Drying Leg of the Soil-Water Characteristic Curve', Book, pp.323-328. 20. Knight, J.H. (1992), 'Sensitivity of Time Domain Reflectometry Measurement to Lateral Variations in Soil Water Content', Water Resources Research, Vol. 28,pp.2345-2352. 21. Knight, J.H., White, I., and Zegelin, S.I. (1994), 'Sampling Volume of TDR Probes for Water Content Monitoring', Proceedings of the Symposium on Time Domain Reflectometry in Environmental, Infrastructure, and Mining Applications, Evanston, Illinois, Sept 7-9, U.S. Bureau of Mines, Special Publication SP 19-94, NTIS PB95-105789,pp.93-104. 22. Lambe, T.W. and Whitman, R. V. (1979), 'Soil Mechanics:SI version', New York, Wiley. 23. Lumb, P. (1975), 'Slop failures in Hong Kong', Quarterly Journal of Engineering Geology, 8:31-65. 24. Mojid, M.A., Wyseure, G.C.L., and Rose, D.A. (2003), 'Electrical Conductivity Problems Associated with Time-Domain Reflectometry (TDR) Measurement in Geotechnical Engineering', Geotechnical and Geological Engineering, Vol. 21,pp.243-258. 25. Mualem, Y.A. (1976), 'New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media', [J]. Water Resources Research, No.12:513-522. 26. Nadler, A., Dasberg, S., Lapid, I. (1991), 'Time Domain Reflectometry Measurements of Water Content and Electrical Conductivity of Layered Soil Columns', Soil Science Society of America Journal, Vol. 55, pp.938-943. 27. Pradel, D. and Radd, G. (1993), 'Effect of permeability on surficial stability of homogeneous slopes', J. Geotech. Eng., 119:315-332. 28. Sidle, R. C. and Swanston, D. N. (1982), 'Analysis of a Small Debris Slide in Coastal Alaska', Canadian Geotechnical Journal, Vol. 19, pp.167-174. 29. Sower, G.F. (1992), 'Natural Landslides', Proc. ASCE Geotechnical Engineering Specialty Conference on Stability and Performance of Slopes and Embankments-II, Berkley, California, pp804-833. 30. Terzaghi, K. (1950), 'Mechanism of Landslides', In: Paige, S. (Ed), Application of Geology to Engineering Practice (Berkey Volume), Geological Society of America, New York, pp.83-123. 31. Topp, G. C., Davis, J. L., and Annan, A. F., (1980), 'Electromagnetic Determination of Soil Water Content and Electrical Conductivity Reflectometry', Water Resources Research, Vol. 16, pp.574-582. 32. Vallejo, L.E. and Mawby, R. (2000), 'Porosity Influence on the Shear Strength of Granular Material-Clay Mixtures', Eng. Geol,. Vol.58, pp.125-136. 33. Van Genuchten, M. Th. (1980), 'A closed-from equation for predicting the hydraulic conductivity of unsaturated soils', Soil Science Society of America Journal, 44:892-898. 34. Vanapalli, S. K., Fredlund, D. G., and Pufahl, D. E. (1999), 'The Influence of Soil Structure and Stress History on the Soil-Water Characteristic of a Compacted Till', Geotechnique, 49 (2), 143-159. 35. Whalley, W.R. (1993), 'Considerations on the Use of Time Domain Reflectometry (TDR) for Measuring Soil Water Content', Soil Science Society of America Journal, Vol.44,pp.1-9. 36. Yong,R.N. and Hoppe, E.J. (1989), 'Application of Electric Polarization to Contaminant Deletion in Soils', Canadian Geotechnical Journal, Vol. 26, No. 4,pp.536-550. 37. Zegelin, S.J., White, I., Jenkins, D.R. (1989), 'Improved Field Probes for Soil Water Content and Electrical Conductivity Measurement Using Tine Domain Reflectometry', Water Resource Research, Vol.25, No.11, pp.2367-2376. 38. 三森利昭、坪山良夫 (1990),「浸透現象考慮斜面安定解析法關研究」,新砂防,第43卷第4號,pp.14~21。 39. 內政部建築研究所 (2003),「坡地住宅地區防災預警觀測警戒行動及疏散準則之研擬」。 40. 內政部營建署 (2003),「坡地社區開發安全監測手冊」。 41. 日本高速道路調查會 (1988),「地危險地動態觀測施工關研究(3)報告書」。 42. 日本道路公團 (1983),設計要領,第二集。 43. 王曼穎 (2012),「非飽合土壤邊坡之監測與分析」,國立成功大學土木工程研究所,碩士論文。 44. 申潤植 (1989),「地工學-理論實踐」,山海堂。 45. 交通部中央氣象局全球資訊網,網址:http://www.cwb.gov.tw/V7/index.htm 46. 吉松弘行 (1981),「降雨地運動」,地。 47. 地對策技術協會 (1978),「地對策技術設計實施要領」,第一卷,第二期。 48. 余貴坤、簡顯光、呂佩玲、陳宜徽 (2008),「降雨對地下水水位變化的影響模式研究」,中央氣象局地震技術報告彙編(交通部中央氣象局計畫編號:MOTC-CWB-97-E-21),第51卷,pp.389-401。 49. 吳昭宏 (1995),「阿里山公路低海拔路段邊坡崩滑特性之研究」,國立成功大學土木工程系,碩士論文。 50. 巫秀星 (2005),「液化土壤模數折減下樁基動力反應分析」,淡江大學土木工程學系研究所,碩士論文。 51. 李光敦 (2005),「水文學」,五南圖書出版公司。 52. 李宏輝、黃燦輝、鄭富書 (2006),「應變率對麓山帶砂岩力學行為之影響」,岩盤工程研討會論文集,pp.11-20。 53. 李明熹 (2006),「土石流發生降雨警界分析及其應用」,國立成功大學水利及海洋工程研究所,博士論文。 54. 林俐玲、陳信宏 (2006),「推估土壤水分特性之研究」,水土保持學報,38(3),pp.302-387。 55. 林軒弘 (2013),「在降雨及地震條件下坡地特性對其穩定性之影響」,國立中興大學水土保持學系研究所,碩士論文。 56. 侯雪寒 (2010),「土壤特性與初始條件對雨水入滲之影響」,朝陽科技大學營建工程系,碩士論文。 57. 拱祥生、林宏達、吳宏偉 (2003),「不飽合土壤邊坡基質吸力量測及其在邊坡穩定分析之應用」,地工技術,第96期,pp.27-42。 58. 洪如江 (1979),「地工技術在台灣山崩中之應用」,邊坡穩定與坍方研討會論文專集,中國土木水利工程學會,pp.147-172。 59. 洪寶發 (2012),「幼葉林地滑地整治工法在降雨條件下之效益評估」,國立中興大學水土保持學系研究所,碩士論文。 60. 范嘉程、馮道偉 (2003),「以有限元素法探討暴雨時邊坡之穩定分析」,地工技術,第95期,pp.61-74。 61. 張文瑄 (2013),「九份地滑地在降雨及地震條件下之穩定性評估」,國立中興大學水土保持學系研究所,碩士論文。 62. 張舒婷 (2007),「土壤水分特性曲線與不飽合水力傳導度之研究」,國立中興大學水土保持學系研究所,碩士論文。 63. 許中立 (1998),「降雨滲流對邊坡穩定影響之研究」,國立中興大學水土保持研究所,博士論文。 64. 陳尚奕 (2009),「粒徑分佈狀況對不飽合崩積土壤吸力之研究」,國立台灣科技大學營建工程系,碩士論文。 65. 陳念軍 (1970),「滲透現象及其影響因子的探討」,水土保持學報,第03卷,pp.18-23。 66. 陳東鉅 (1992),「指狀流在層狀土壤之入滲分析」,國立台灣大學農業工程學系,碩士論文。 67. 陳冠志、徐國錦 (2003),「坡地水流對崩塌影響之研究」,中華水土保持學報,34(1),pp.41-54。 68. 陳振鐸 (1980),「土壤水之理論與利用」,台北市編譯館。 69. 陳爾義 (2002),「地下水浸潤及滲流對崩積土邊坡穩定影響之探討」,國立海洋大學河海工程系,碩士論文。 70. 單信瑜 (2005),「台灣地下水資源使用與水質現況」,水環境教育教師研習活動。 71. 曾志豪 (2004),「降雨對阿里山公路邊坡破壞模式分析之影響研究」,國立成功大學土木工程研究所,碩士論文。 72. 飯田修、田中隆文、竹田泰雄、片岡順 (1986) 「月平流域表層崩壞關係與量─考察」,新砂防,第36卷第4號,pp14~17。 73. 廖瑞堂 (2001),「山坡地護坡工程設計」,科技圖書。 74. 劉邦崇 (2001),「以砂箱試驗探討地下水滲流對邊坡崩壞之影響」,國立中興大學水土保持學系研究所,碩士論文。 75. 蔡孟棻 (2005),「以土壤水分特性曲線評估不飽合土壤邊坡穩定性」,國立台灣科技大學營建工程研究所,碩士論文。 76. 蔡雅如 (2012),「以數值方法評估地下排水工法對邊坡穩定之有效性」,國立中興大學水土保持學系研究所,碩士論文。 77. 鄭克聲、許恩菁、葉惠中 (1999),「具隨機碎形特性之暴雨雨型」,台灣水利,47(3):43-54。 78. 鄭雅仁 (2009)「台灣部分地區土壤水分特性曲線之預測」,國立台北科技大學土壤與防災研究所,碩士論文。 79. 鄭順隆 (2006),「崩塌地降雨-入滲-滲流機制之數值模擬及穩定性分析」,國立中興大學水土保持學系研究所,碩士論文。 80. 鄧鳳儀 (2008),「湖口崩塌地水文地質數值模型回饋分析研究」,國立中央大學應用地質研究所,碩士論文。 81. 賴世寶 (1994),「坡地多層土壤滲流之研究」,國立台灣大學農業工程學系,碩士論文。 82. 簡睿宏 (2009),「水文因子導致邊坡崩塌之研究」,國立高雄大學土木與環境工程學系,碩士論文。
摘要: 本研究首先沿幼葉林地滑地C-C'剖面測線,進行土壤鑽探取樣以及物理、力學試驗,以決定表土層之物理及力學工程性質。同時,蒐集其他分層之相關鑽探與岩土力學試驗資料,以便作為數值分析,地層材料模型輸入參數之參考依據。 接著,採用Geo-Studio 2012數值分析程式,針對幼葉林地滑地,採用2014年鳳凰颱風降雨事件,進行降雨滲流數值模擬。同時,將降雨期間之現地地下水水位模擬值與監測值進行比對,檢視兩者地下水水位變化趨勢之吻合度,以率定驗證各類輸入參數之有效性。 隨後,採用特定降雨事件(降雨期間:2015/06/01~2015/06/03,累積降雨量:215 mm,以下簡稱6月豪雨),對幼葉林地滑地C-C'剖面潛在滑動面進行降雨滲流、位移及穩定性分析。分析中,配合輸入不同之表土層未飽合水份特性曲線(或θ(u) ~ u曲線,以下簡稱SWCC),以檢核其對數值分析結果之影響。其中,本研究之SWCC乃採用土壤之基本物理性質(D10、D60、LL、θsat)及壓力鍋試驗予以決定。 另外,採用瑞里雨量站之13年之降雨紀錄,藉由雨量頻率計算分析可決定重現期距為20年、50年及100年之24小時設計雨型,並採用來進行降雨滲流與邊坡穩定性分析。以探討不同重現期距設計雨型對潛在滑動面上監測孔位之孔隙水壓、地層側向位移及穩定性安全係數之影響。分析結果顯示,重現期距越大,土壤之孔隙水壓、地層側向位移越高,而穩定性安全係數則是。 分析結果顯示,潛在滑動面上監測點之土壤體積含水量、孔隙水壓、地層側向位移及穩定性安全係數,皆與降雨強度有連動性。當降雨強度提高時,土壤之體積含水量、孔隙水壓及側向位移會隨之增加,並伴隨穩定性安全係數降低。另外,在土壤體積含水量方面,監測值與模擬值之吻合度未如預期,推測原因,除了二維數值分析無法完整模擬邊坡之三維地表地文以及地下水文之實況外,也可能由於水分計TDR在量測初期,仍未趨於穩定所致。 最後,由數值分析結果得知,採用壓力鍋試驗求得之SWCC來進行分析,相較於採用基本物理性質決定之SWCC,其降雨滲流、邊坡位移及穩定性分析結果,較符合現地觀測情況。因此,本研究依據壓力鍋試驗求得之土壤體積含水量θ(volumetric water content)與基質吸力u(matric suction)數據資料,進行回歸分析可決定幼葉林地滑地之θ(u) ~ u函數曲線回歸式,作為爾後未飽合表土層降雨入滲分析之參用公式。
At first, soil borings were performed along the C-C' profile of You-Ye-Lin landslide and undisturbed samples were collected systematically for a series of physical and mechanical tests in laboratory. The soil boring logs and laboratory testing results were employed as references to determine the numerical model and soil material model parameters for sequential numerical analyses. Further, using Geo-Studio 2012 numerical analysis tool, one can perform a series of rainfall induced seepage analyses on You-Ye-Lin landslide under the rainfall condition during Fung-Wong typhoon in 2014. Meanwhile, the groundwater variation of simulation was compared with those of measurement to calibrate and verify the validity of various material model parameters. The comparisons also show that the variation trend of the groundwater level of simulation is reasonably coincident with that of measurement. Subsequently, a specific rainfall event (rainfall duration: 2015/06/01~2015/06/03, cumulative rainfall: 215 mm) was adopted for a series of rainfall induced seepage, displacement, and stability analyses along the potential sliding surface of C-C' profile in You-Ye-Lin landslide. In the analyses, the influence of unsaturated Soil Water Characteristic Curves (SWCC or θ(u) ~ u curve, in which θ and u denote volumetric water content and pore water pressure respectively) on the numerical results was prudently inspected. In this study, two methods are employed to determine the SWCC, namely, physical property method (D10、D60、LL、θsat) and pressure plate experimental method. In addition, the 13 years rainfall records of Ruei-Li rainfall monitoring station were used to determine the 24 hours design rainfall of 20, 50, and 100 years return period. The 24 hours design rainfall with different return periods were then used for a series of rainfall seepage and slope stability analyses. The numerical results indicate that the rainfall induced pore water pressure and lateral displacement of soil mass will increase with the extension of return period and which alternately reduces the factor of safety of the potential sliding surface. The numerical results show that the soil water content θ(u), pore water pressure u, lateral displacement Δh, and factor of safety FS along the potential sliding surface are greatly relevant to the rainfall intensity. The θ(u), u, and Δh values will be promoted to response an immediate increase of rainfall intensity whereas a reduction of FS value is obtained simultaneously. For the volumetric water content of soil mass, the simulation is not coincident with observation well as expectation. In addition to the inherent limitation of two-dimensional (2-D) numerical analysis which is unable to consider the three-dimensional (3D) topographical and hydrological conditions, the deviation between simulation and observation of volumetric water content may be caused by the instability of in-situ time domain reflectometry (TDR) measurement of water content at initial adjustment stage. Eventually, the numerical results also verify that the SWCC determined by pressure plate experimental method enable to provide better predictions on the pore water pressure, displacement, and factor of safety from rainfall induced seepage and slope stability analyses than the SWCC estimated by physical property method.
URI: http://hdl.handle.net/11455/89419
其他識別: U0005-1508201510221000
文章公開時間: 2018-08-18
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.