Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89420
標題: Affecting Factors of Vegetation Recovery at the Post-Fired Sites in a Watershed
影響集水區火燒跡地植被復育因子之研究
作者: 詹杭勳
Hang-Hsun Chan
關鍵字: 植被復育
塔塔加火燒跡地
階層迴歸分析
Vegetation recovery
Tataka fire
Hierarchical regression
引用: 1. 互動國際數位股份有限公司(2011),ArcGIS 10 基礎學習與應用寶典,新北市,新文京開發出版股份有限公司。 2. 玉山國家公園管理處,(1994),玉山國家公園第一次通盤檢討計畫書,南投縣,內政部營建署玉山國家公園管理處。 3. 玉山國家公園管理處,(2012),玉山國家公園(第3 次通盤檢討)計畫書,南投縣,內政部營建署玉山國家公園管理處。 4. 行政院農業委員會,(2013),災害防救業務計畫,擷取自 中央災害防救會報:http://www.cdprc.ey.gov.tw/Upload/RelFile/1178/662/4283b656-26e9-4cd1-9728-523746d2cfa9.pdf 5. 行政院農業委員會林務局,(2015),林業統計電子書,擷取自 行政院農業委員會林務局:http://www.forest.gov.tw/public/Attachment/561016381771.pdf 6. 吳景揚(2003),林火與氣象指標因子之研究-以南投林區為例,國立屏東科技大學森林系碩士學位論文。 7. 林政侑(2012),應用環境指標劃定集水區地覆類別及熱點區位監測之研究,國立中興大學水土保持學系碩士論文。 8. 林昭遠(1991),野火影響森林土壤性質之研究,國立中興大學植物學研究所博士論文。 9. 林昭遠(2001),集水區崩塌地植生復育監測與評估,水土保持植生工程研討會論文集,頁 50-58,台北市:行政院農業委員會。 10. 林昭遠、林文賜(2001),集水區資訊系統(WinGrid)入門,台中市:暐帥股份有限公司. 11. 林朝欽(1994),國有林玉山事業區塔塔加之森林火災研究,中華林學季刊,第二十七卷,第一期,頁 23-32。 12. 林朝欽、邱祈榮、周巧盈(2005),火燒嚴重度之界定與評估:以武陵森林火災為例,台灣林業科學,第二十卷,第三期,頁203-213。 13. 邱皓政(2006),量化研究與統計分析:SPSS中文視窗版資料分析範例解析,台北:五南圖書出版股份有限公司。 14. 陳鐘誠(2010),K-Means 分群演算法,擷取自 陳鐘誠的網站: http://ccckmit.wikidot.com/ai:kmeans( 15. 楊美玲(1996),塔塔加地區森林火災對松類造林地之植群、微氣候及土壤性質的影響,內政部營建署玉山國家公園管理處。 16. 廖天賜、陳忠義、陳信惟、潘冠良、楊凱愉、韓明琦、黃立彥、陳宜敏(2005),塔塔加地區森林火災後植群演替及重要木本植物生態生理特性之研究,內政部營建署玉山國家公園管理處。 17. 潘國樑(2009),遙測學大綱(第二版)遙測概念、原理與影像判釋技術,台北:科技圖書股份有限公司。 18. 穆婧、林昭遠(2013),集水區崩塌地環境指標分析與崩塌潛感推估,中華水土保持學報,44(2),頁121-130。 19. 謝有忠(2012),地質百科,擷取自 臺灣地質知識服務網:http://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/ct?xItem=140861&ctNode=1233&mp=105 20. Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), pp. 43-69. 21. Bluman, A. G. (2009). Elementary statistic a step by step approach seventh edition. New York: McGraw-Hill. 22. Escuin, S., Navarro, R., & Ferna´ ndez, P. (2008). Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing, 29(4), pp. 1053-1073. 23. Goodman, L. A., & Kruskal, W. H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association, 49, pp. 732-764. 24. Goodman, L. A., & Kruskal, W. H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association, 49, pp. 732-764. 25. Héctor, R. G., & Thomas, T. V. (2000). Rainfall variability, fire and vegetation dynamics in neotropical montane ecosystems in north-western Argentina. Journal of Biogeography, 27, pp. 1107-1121. 26. Julie, A. H., & Stephen, G. P. (1999). Effect of fire on survival and growth of Acer rubrum and Quercus seedlings. Forest Ecology and Management, 118, pp. 49-56. 27. Key, C. H. (2005). Remote sensing sensitivity to fire severity and fire recovery. Proceedings of the 5th International Workshop on Remote Sensing and GIS Applications to Forest Fire Management (pp. 29-39). Spain: Universidad de Zaragoza. 28. Key, C. H., & Benson, N. (2006). Landscape Assessment (LA). USDA Forest Service Gen. 29. Lea, W., Dan, M., & Ronel, B. (2014). The differential response of surface runoff and sediment loss to wildfire events. Catena, 121, pp. 241-247. 30. Lopez, G. M., & Caselles, V. (1991). Mapping burns and natural reforestation using thematic Mapper data. Geomorphology Geocarto International, 6(1), pp. 31-37. 31. MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability (pp. 1:281-297). Berkeley: University of California Press. 32. Ricardo, D.-D., Francisco, L., Xavier, P., & Jaume, T. (2002). Satellite evidence of decreasing resilience in mediterranean plant communities after recurrent wildfires. Ecology, 83(8), pp. 2293-2303. 33. Rouse, J. W., Jr.Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Montoring vegetation systems in the great plains with ERTS. 3rd ERTS-1 Symposium (pp. 309-317). Washington, D.C.: University of California Libraries.
摘要: 火燒跡地植被復育評估模式,可利於推估野火後植被之發展,瞭解影響植被復育之主要因子,對火燒跡地復育工作規劃之助益極大。本研究試藉文獻回顧,納入可影響火燒跡地植被復育之因子,藉比對因子之評估能力、關聯性並探討模式適用性,期提供復育評估模式因子之優選參考。   本研究以玉山國家公園塔塔加集水區之1993年野火事件為案例,藉由文獻回顧、遙測資料蒐集與地理資訊系統及影像處理技術,將地質、土壤、坡向、坡度、地形濕度、高程、地覆類別、火燒嚴重度與下種距離等文獻回顧相關之9項因子,以階層迴歸與因子關聯分析檢定因子對火燒跡地植被復育之影響程度;最後經檢定因子與植被復育之趨勢探討其適用性,俾提供植被復育評估因子之優選。   結果顯示,土壤、高程與火燒嚴重度等因子於各時期植被復育評估皆適用;而坡度與地覆類別此兩因子則僅適用於評估野火後兩年以後之植被復育;鑒於因子間之關聯性與適用性,在復育評估模式建置上宜排除地質、坡向、地形濕度與下種距離等四項因子。而藉由土壤、高程、火燒嚴重度、坡度與地覆類別等因子建置之復育評估模式,其判定係數隨時間有上升趨勢,在野火後六年可達0.60,與納入文獻回顧相關之9項因子之模式的判定係數僅差0.05,顯示該五項優選因子可有效率評估火燒跡地植被復育。
Vegetation recovery assessment model for a fire site can be applied to estimate the vegetation development of the post-fire land, and understand the crucial factors which affect the following vegetation recovery, and it is beneficial for the use of post-fire recovery planning. This study tries to compare the factor's ability to evaluation, analyze their association and feasibility using literature review for the references of factor priority selection in the model.   Wildfire event at the Tataka of Yushan National Park in 1993 was selected as case study. With literature review, remote sensing data collection, geographic information systems and image process techniques coupled with hierarchical regression and association analysis, and factors such as geology, soil, aspect, slope, terrain wetness, altitude, pre-fire land-cover, burn severity and seeding distance from unburned area were surveyed from literatures to explore affecting factors of vegetation recovery at the post-fired sites. Finally, trend analysis was applied to determine the factor which could be served in the models for restoration assessment.   Soil, altitude and burn severity are the suitable factors that can be used in the models to assess vegetation recovery at the post-fired sites. Factors of Slope and pre-fire land-cover are recommended to be used in the models under the condition of more than two-year's succession. However; factors of geology, aspect, terrain wetness and seeding distance from unburned area should be excluded in the models for the sake of association and applicability consideration. Dummy regression models built with the variables of soil, altitude, burn severity, slope and post-fire land-cover show that the determination coefficient increases with time to plant succession, and the value can reach to 0.60 derived from the burning sites after six year's plant succession, and the value of determination coefficient for this 5- variable model only less than 0.05 comparing to the model with 9- variable derived from literature. This reveals that the model with 5 effective factors could be employed to assess the vegetation recovery at the post-fired sites.
URI: http://hdl.handle.net/11455/89420
其他識別: U0005-1208201513131600
文章公開時間: 2015-08-18
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.