Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89444
標題: Prototype Field Experimental Analysis of Natural Dam Failure Behavior
現地試驗分析天然壩潰決歷程
作者: 王 強
Chiang Wang
關鍵字: 堰塞壩
現地試驗
水文歷線
溢頂潰決
管湧
Landslide Dam
Field Experiment
Hydrograph
Over-Topping
Piping
引用: 1.孔紀名、阿發友、鄧宏艷(2004),「基於滑坡成因的汶川地震堰塞湖分類及典型實例分析」,四川大學學報(工程科學版),42(5):44~51。 2.田畑茂清、水山高九、井上公夫(2002),「天然災害」,古今書院,東京。 3.徐子陽(2013),「堰塞壩溢頂潰決現地試驗與室內試驗」,國立中興大學,水土保持學系,碩士學位論文 4.陳樹群(1999),「堰塞湖潰決機制與減災工法研究」,中華水土保持學報,30(4):299~311。 5.陳樹群、吳俊鈜(2009)莫拉克颱風引致小林村堰塞湖之形成與潰決歷程」中華水土保持學報,40(4):377~392。 6.劉寧、程尊蘭、崔鵬、陳寧生(2013), 堰塞湖及其風險控制」 科學出版社北京,135~138。 7.聶高眾、高建國、鄧硯(2004) ,「地震誘發的堰塞湖初步研究」,第四紀研究,24(3):293~301。 8.Brambilla S., Ferrari F. and Gatti D. (1999). 'Cascade dam failure analysis using a lagrangian specification of the flow field.' IAHR Confess. Graz, Austria, p.22-27. 9.Casagli, N., Ermini, L., (1999). Geomorphic analysis of landslide dams in the Northern Apennine. Transactions of the Japanese Geomorphological Union 20(3), 219–249. 10. Casagli, N., Ermini, L., Rosati, G., (2003). Determining grain size distribution of material composing landslide dams in the Northern Apennine: sampling and processing methods. Engineering Geology 69, 83–97. 11. Chai., Liu., and Zhang. (2001). 'Preliminarily stability analysis of natural rock field dam resulting from damming landslide,' Geological Science and Technology Information, 20 (1): 77~81. 12. Costa, J.E., Schuster, R.L., (1988). The formation and failure of natural dam.Geological Society of America Bulletin 100, 1054–1068. 13. Cui, P., Dang, C., Zhuang, J.Q., You, Y., Chen, X.Q., and Scott, K.M., (2012),'Landslide-dammed lake at Tangjiashan, Sichuan province, China (triggered by the Wenchuan Earthquake, May 12, 2008): risk assessment, mitigation strategy,and lessons learned,' Environmental Earth Sciences, 65(4):1055-1065. 14. Ermini, L. and N, Casagli. (2003), 'Prediction of the Behaviour of Landslide Dams using a Geomorphological Dimensionless Index,' Earth Surface Processes and landforms, 28:31-47. 15. Fread, D. L. (1988). 'The NWS DAMBRK model: Theoretical background/user documentation.' HRL-258, Hydrologic Research Laboratory Report, National Weather Service, Silver Spring, Md. 16. Fread, D.L. (1977). 'The development and testing of a dam-break flood forecasting model.' Proc., Dam Break Flood Routing Model Workshop, U.S.Dept. of Commerce, Nat. Tech. Service, Oct., 164-197. 17. Fread, D.L. (1984). DAMBRK:The NWS Dam-Break Flood Forecasting Model,Silver Spring, Maryland., National Weather Service, Office of Hydrology. 18. Fread, D.L. 1988 (revised 1991), BREACH: An Erosion Model for Earthen Dam Failures., Silver Spring,Maryland., National Weather Service, National Oceanic and Atmospheric Administration, p.1-31. 19. Froehlich, D.C., (2008). 'Embankment dam breach parameters and their uncertainties,' Journal of Hydraulic Engineering, 130(12):1708-1721. 20. Korup, O. (2002), 'Recent research on landslide dams - a literature review with special attention to New Zealand,' Progress in Physical Geography, 26: 206~235. 21. Korup, O., (2004). Geomorphometric characteristics of New Zealand landslide dams. Engineering Geology 73, 13–35. 22. Macchione, F. (1989). 'Discussion on 'Dimensionless analytical solutions for dam breach erosion by V. P. Singh, and C. A. Quiroga.' J. Hydraul. Res., 27(3), 447–452. 23. Mohamed, M. A. A., Samuels, P. G., Morris, M. W., and Ghataora, G. S. (2002). Improving the accuracy of prediction of breach formation through embankment dams and flood embankments.' River Flow 2002, Proc., Int. Conf. on Fluvial Hydraulics, Vol. 1, D. Bousmar and Y. Zech, eds., Balkema, Lisse, The Netherlands. 24. Niu Z., P., Xu W., L., Li N., W., and Xue Y., (2012) 'Experimental investigation of the failure of cascade landslide dams.' Journal of Hydrodynamics, 24(3):430-441 25. Schuster, L. and Costa, E. (1986) 'A perspective on landslide dams, Landslide Dams,' Geotechnical Special Publication No.3, ASCE, New York, 1-20 26. Schuster, R. L. (2000), 'Outburst debris flows from failure of natural dams,'Proceedings 2nd International Conference on Debris Flow Hazard Mitigation,29~42. 27. Schuster, R. L. and Costa J. E. (1986). 'A Perspective on Landslide Dams,'Landslide Dams, Processes, Risk and Mitigation, pp.1-20. 28. Singh, K. P., and Snorrason, A. (1984). 'Sensitivity of outflow peaks and flood stages to the selection of dam breach parameters and simulation models.' J. Hydrol., 68, 295–310. 29. Singh, V. P. (1996). Dam breach modeling technology, Kluwer Academic, Norwell, Mass. 30. Swanson, F.J., Oyagi, N., Tominaga, M., 1986. Landslide dam in Japan. In:Schuster, R.L. (Ed.), Landslide Dam: Processes Risk and Mitigation. Geotechnical Special Publication, 3. American Society of Civil Engineers, pp.131–145. 31. Terzaghi, K. and Peck, R.B. 'Soil Mechanics in Engineering Practice,' p.222-235. 32. Wahl, T. L. (1998). 'Prediction of embankment dam breach parameters: A literature review and needs assessment.' Dam Safety Rep. No. DSO-98-004, Bureau of Reclamation, U.S. Dept. of the Interior, Denver. 33. Wahl, T.L. (2004), 'Uncertainty of predictions of embankment dam breach parameters,' Journal of Hydraulic Engineering, 130(5):389-397.
摘要: 極端氣候日益頻繁,豪大雨侵襲常導致台灣地區產生許多崩塌與土石流進入河道,進而形成堰塞壩。堰塞湖水流溢頂造成壩體潰決,對河道造成二次破壞,並威脅下游地區民眾之生命財產安全。本研究於中興大學惠蓀林場蘭島溪,運用能高大圳排砂閘門調整流量,進行全球唯一的堰塞壩潰決現地試驗,並配合影像、水位及地形測量等,針對天然湖潰決歷程進行探討。期能對堰塞壩潰決之系列災害得到更深入、真實與精確的了解與分析,並建立堰塞壩潰決試驗之精準量測場域。 現地試驗結果顯示,堰塞湖水位上升速率受蓄水體形狀及壩體管湧現象影響,隨水位升高趨緩;在潰決歷程中,水位變化速率初期因潰口之展寬與刷深漸增,待潰口發展穩定時達到峰值後隨潰決歷程穩定而下降。在堰塞湖水位達到最高值時,溢頂水流越過壩體後開始下刷並溯源侵蝕,待壩頂形成主溝槽後開始大量潰決,於兩次單壩試驗中,潰口處約於溢頂後約六十秒達到最高流速與最大流量,並隨著潰口刷深、展寬及堰塞湖水位下降而逐漸趨緩、穩定。 系列雙壩之主要交互影響為上游潰決水流造成下游湖體水位迅速抬升,縮短堰塞湖蓄水歷程及管湧作用影響時間,此次試驗中,兩壩體間距為一百公尺,若兩壩體間距較大,使洪水傳遞時間增加,進而造成管湧作用影響增大,則可能造成下游壩體潰決形態由溢頂破壞轉變為管湧破壞。 本研究分析管湧作用對壩體主要影響有以下:(1) 造成堰塞壩之內部掏空,造成壩體滑移甚或崩落,並於壩頂出現裂隙。(2) 於壩體下游面產生掏刷破壞,除可能造成潰決形態之改變外,若壩體仍以溢頂方式破壞,則可能改變溢頂潰決之潰口發展歷,造成潰口發展擺盪或偏移。(3) 潰決歷程中管湧作用之發生,亦會影響堰塞湖蓄水歷程。
As the global warming, the heavy rainfall frequently caused the landslide and debris flow entering the river channel, and evolving into natural dam in Taiwan. The over-topping of the landslide dam can induce the failure of the dam, the secondary damage of the river channel, and even involve the life and property safety of the residents living on the downstream area. This study select Landao creek in Huisun experimental forest of National Chung-Hsing University to conduct the first field testing of natural dam failure in the world. The field test adjusted the desilting gate to control the discharge and also combined the technique of photography and ordnance survey to analysis the failure course. By the reliable of the field test analysis, the system of natural dam failure experiment can be actual established. The result of the field experiment shows that the velocity of the natural dam water level incensement is affected by the shape of water volume dam and the piping of the dam. It gets slow by the incensement of the water level. In the course of the dam failure, the changing velocity of the water level increases by broadening of the breach at the initial state and decreases till the stabilizing of the breach development. When the water level of natural dam reaches the maximum value, the flow of the over-topping will pass through the dam and cause the retrogressive erosion. A large failure occurred since the top of the dam formed a main groove. From the result of two cases in single dam experiments, the breach reaches the maximum flow velocity and discharge value about 60 seconds after the over-topping of the natural dam. Then,the flow velocity and discharge value will slow and stabilize by the broadening of the breach and the decreasing of the water level. The main interaction infection of the serial double-dam is the water flow from the upstream. The inflow from the upstream cause the water level of the dam increase and shorten the infection time of the water storage and the piping of the natural dam. In this experiment, the distance of two dam bodies is 100 meters. If the distance of the two dam gets to large, the flooding time will increase,the infection of piping and mostly the type of the downstream dam will transform from over-topping into piping failure. This study proposes the infections of piping interacting with the dam: (1) Causing the internal emptied of the dam and inducing the dam sliding or collapsing while the crack happened on the top of the dam. (2) The washing failure of the downstream face of the dam. Besides causing the change of the failure type, it might change development of the breach if the dam is failed by over-topping. (3) The flow storage of the natural dam is infected by the piping during the dam failure.
URI: http://hdl.handle.net/11455/89444
其他識別: U0005-0607201513411200
文章公開時間: 2016-07-16
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.