Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89451
標題: Application of Grid Rational Algorithm for Predicting Hydrograph (GRAPH) Model in Suspended Load Estimation for a Watershed
網格式合理化法(GRAPH)應用於集水區懸移質輸砂量推估之研究
作者: 張力文
Li-Wen Zhang
關鍵字: 網格式合理化法
降雨-逕流模式
懸移質輸砂量
崩塌率
GRAPH
Rainfall-runoff model
Suspended load
Landslide ratio
引用: 1.王如意、易任(1979),「應用水文學」上、下冊,國立編譯館。 2.王裕民、莊舒喬、賴其均、柯亭帆(2006),「暴雨中河川懸移質推估之研究」,北京科技大學-國立屏東科技大學學術研討會。 3.王俊哲(2003),「九二一集集大地震前後集水區泥砂量推估之探討-以烏溪支流北港溪集水區為例」,國立中興大學水土保持學系碩士論文。 4.內政部建築研究所(2013),「社區及建築基地減洪防洪規劃手冊」。 5.行政院農業委員會水土保持局(2003),「應用衛星影像探討集水區逕流係數空間分佈之研究」,九十二年度土石流防災暨監測科技計畫成果彙編。 6.行政院農業委員會水土保持局(2005),「水土保持手冊」。 7.朱怡亭( (2007),「玉峰集水區颱風事件河川流量和懸移質濃度關係之研究」,地理學報(49):1-22。 8.朱紹華(2008),「以不同降雨量資料分析探討逕流量與逕流係數之變化」,淡江大學水資源及環境工程學系碩士論文。 9.江山宏(2005),「九九峰崩塌地變遷監測之研究」,明道管理學院環境規劃暨設計研究所碩士論文。 10.江介倫、許駿騰、胡茵婷、吳若穎(2009),「地理資訊系統及HEC-HMS 應用於中小集水區降雨逕流模擬」,坡地防災學報,8(2)29-44。 11.李光敦(2009),「水文學」,五南圖書出版股份有限公司。 12.李廣賢(2008),「利用合成單位歷線推估無流量資料集水區之出流量歷線-以台灣中部地區為例」,逢甲大學水利工程與資源保育學系碩士論文。 13.林昭遠、林文賜(2000),「集水區地文水文因子自動萃取之研究」,中華水土保持學報,31(3):247-256。 14.林昭遠、宋之光、林壯沛(2004),「集水區植生復育評估系統與降雨逕流模式建置之研究」,水土保持學報,36(3):215-230。 15.林昭遠、林鶴儒、劉昌文(2004),「陳有蘭溪集水區降雨-逕流模式動態分析系統建置之研究」,水土保持學報 36(3):243-258。 16.林昭遠、劉志宇、蔡真珍(2004),「泥岩集水區降雨-逕流歷線建置之研究」,水土保持學報,36(2):121-134 17.林昭遠、鍾亦婷、林文賜(2005),「八掌溪集水區降雨-逕流模式動態分析系統之建置」,水土保持學報,37(3):221-236。 18.林昭遠(2005),「地表逕流之截蓄保水設施對於生態農村輔助效益之研究」,行政院農業委員會水土保持局。 19.林昭遠、陳昱豪、林家榮(2006),「集水區泥砂產量推估之研究」,水土保持學報,38(2):207-218。 20.林昭遠(2007),「地表逕流之截蓄保水設施對於生態農村輔助效益之研究(III)」,行政院農業委員會水土保持局。 21.姜承吾(1996),「應用水文學」,中國土木水利工程學會。 22.孫振哲、莊智瑋、林昭遠(2007),「網格式合理化法推估集水區流量歷線之研究」,水土保持學報 39(2):155-171。 23.徐義人(2003),「應用水文學」,國立編譯館。 24.陳翰霖、張瑞津(2007),「曾文溪流域豪大雨事件的流量及輸砂量」,地理學報(48):43-65。 25.陳雅婷(2007),「台灣地區合理化公式逕流係數區域化公式之建立」,國立交通大學土木工程系所碩士論文。 26.陳樹群、謝永能(2008),「集水區型態對集流時間影響之研究」,中華水土保持學報,39(1): 83-93。 27.莊智瑋、周文杰、林昭遠(2005),「新武呂溪集水區降雨-逕流模式之研究」,水土保持學報 37(4):349-362。 28.張進鑫、李光敦(2004),「中間流對集水區降雨逕流模擬之影響」,中國農業工程學報,50(1)民93.03:50-62。 29.許盈松(2003),「草嶺堰塞湖下游河道動床水理分析研究」,泥砂研究,(3):22~29。 30.許盈松(2007),「水庫泥砂濁度與濃度率定關係研究-以石門水庫為例」,農業工程學報53(1):62-71。 31.黃仁國、李光敦(2009),「考慮時變性部分集水面積概念之降雨逕流模式」,中國土木水利工程學刊,21(1)民98.03:13-23。 32.程勝璟(2004),「甲仙攔河堰懸移質輸運率研究」,屏東科技大學土木工程系碩士論文。 33.楊政潭(2003),「雷達回波應用於颱風降雨空間分佈與總量之研究—以納莉颱風為例」,國立中央大學水文科學研究所碩士論文。 34.經濟部水利署(1980~2009),「臺灣水文年報」。 35.經濟部水利署(2008),「濁水溪支流清水溪治理規劃檢討」。 36.經濟部水利署(2010),「水文分析圖表範例及作業參考手冊」。 37.經濟部水利署水利規劃試驗所(2006),「區域排水整治及環境營造規劃參考手冊」。 38.經濟部水利署中區水資源局(2011),「湖山水庫工程計畫第3次環境影響差異分析報告」。 39.經濟部水利署中區水資源局(2011), 40.經濟部水利署第四河川局(2010),「濁水溪整體疏濬評估計畫(100~102年)」。 41.經濟部中央地質調查所(2006),「臺灣地質概論:臺灣地質圖說明書」,何春蓀編著。 42.廖依玲 (2003),「基隆河流域降雨-逕流模式建置之研究」,國立中興大學水土保持學系碩士論文。 43.蔡光雄(1990),「水文學」,科技圖書股份有限公司。 44.鄭士仁、周建明、洪君伯、李如晃(2011),「序列線性水庫單位歷線模式之逕流生成及其應用」,農業工程學報,57(2)民100.06:26-46。 45.謝平城、褚思穎(2008),「後龍溪流域逕流係數與逕流曲線值之研究」,水土保持學報,40(2):205-221。 46.謝惠紅、鄭士仁、劉璟燁、周世昌、蕭博仁(2006),「夏季日降雨量空間分佈特性之研究」,農業工程學報,52(1):47-55。 47.Asselman, N. E. M., (1999), Suspended sediment dynamics in a large drainage basin: the River Rhine, Hydrological Process, Vol. 13, pp.1437-1450. 48.Burgan, R. E., and R. A. Hartford (1993), Monitoring Vegetation Green- ness with Satellite Data, USDA For. Serv. Gen. Tech. Rep. INT297, pp.13. 49.Bedient, P. B., and Huber W. C. (2002), Hydrology and Floodplain Analysis 3rd ed, Prentice-Hall, Inc.,New Jersey, USA, pp.394-398. 50.Congalton, R.G., (1991), A review of assessing the accuracy of classifications of remotely sensed data, Rentote Sensing of Environment, 37:pp.35-46. 51.Córdova J. R., and González M. (1997), Sediment yield estimation in small watersheds based on streamflow and suspended sediment discharge measurements, Soil Technology , Vol.11 , pp.57-65. 52.Chou W. C. (2004), Development and Application of Grid Rational Algorithm for Predicting Hydrograph (GRAPH) Model, Department of Soil and Water Conservation National Chung-Hsing University Doctoral Dissertation. 53.Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Ching, H. J., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., and Lin, J. C., (2003), Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, Vol. 426, pp. 648-651. 54.Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L., Lin, C. W., Horng, M. J., Chen, T. C., Milliman, J., and Stark, C. P., (2004), Earthquake-triggered increase in sediment delivery from an active mountain belt, Journal of Geology, Vol. 32, No. 8, pp. 733-736. 55.Nayak P. C., Sudheer K.P., and Ramasastri K. S. (2005), Fuzzy computing based rainfall-runoff model for real time flood forecasting, Hydrological Processes Vol.19: pp.955-968. 56.Walling, D. E., and Webb, B. W., (1987), Suspended load in gravel-bed rivers: UK experience. In: Sediment Transport in Gravel-bed Rivers (ed. by C. R. Thorne, J. C. Bathurst & R. D. Hey), pp.691-732 . John Wiley & Sons, Chichester, UK. 57.Wanielista, M., Kersten, R. and Eaglin R. (1997), Hydrology: Water Quantity and Quality Control 2nd ed, John Wiley & Sons, Inc., New York, USA, pp.205-264.
摘要: 清水溪集水區自九二一大地震後,震鬆原本脆弱地質,每逢颱風暴雨,洪水挾帶大量泥砂,易危及下游地區之保全對象。本研究利用網格式合理化法(Grid Rational Algorithm for Predicting Hydrograph, GRAPH) 模擬清水溪集水區逕流歷線,並配合懸移質實測紀錄,以逐時之流量推估暴雨期間河川懸移質輸砂量。結果顯示在高流量(重現期距大於5年)下,實測與推估之懸移質輸砂量有較高的符合度(誤差約10%);中流量(重現期距3~4年)之模擬結果較差(誤差30%~50%),其原因乃所推估之流量歷線常因上升段或退水段過度靈敏而影響推估結果。顯示本模式適合於高流量下懸移質輸砂量之推估,流量愈大所推估之誤差百分比愈小。 研究結果顯示採用較小時間尺度推估懸移質輸砂量,其誤差較小,且誤差的波動程度亦較小,所得之模擬結果精確度愈佳。因水流含砂濃度隨流量而變化具有時變性,且河川流量與懸移質輸砂量呈乘冪關係,以較大時間尺度分析易粗略懸移質輸砂量與流量之關係。故本研究模式採用逐時之流量及懸移質含量模擬暴雨期間懸移質輸砂量,較一般以日流量之推估方式準確性高。 由模擬結果可知,集水區崩塌地變遷對河川懸移質的濃度變化有重大影響,降雨-逕流模式之校正係數α值與崩塌率成負相關,而β值則與其成正相關,顯示崩塌率愈大,集水區內之涵養水源能力愈差,水流含砂濃度隨著增高。
Geologic condition in Chingshui River watershed became more fragile after Chi-Chi earthquake. Lots of sediments transported by the torrential floods during the following typhoon seasons cause huge hazards which threaten the protected targets located at the downstream areas. However, the suspend load has its uncertainties and difficult to measure during typhoon event. Alternatively, the indirect estimation of suspend load, which applicable provide early response and handling of disaster prevention, should be proposed. This study, a hydrologic model (Grid Rational Algorithm for Predicting Hydrograph, GRAPH) was used to simulate the runoff hydrograph in Chingshui watershed. Moreover, the suspended load during the typhoon and/or heavy rainfall event would be estimated from hourly discharge and compared with measure data. The results show that the events with high peak flow (return period greater than 5 years) perform better consistency in suspended load estimation (about 10% errors); while the events with medium peak flow (return period: 3-4 years) showing errors within the range of 30% to 50% due to sensitivity of rising and recession limb in hydrograph simulation. This study reveals that the model was suitable to estimate suspended load under high peak flow. The higher peak flow it was, the more accurate it has. The results show that there is a good accuracy for small error and variation in suspended load estimated using a smaller time scale. Relationship of suspended load and discharge will be ignored briefly while adopting larger time scale due to temporal dependence of variation in sediment concentration which varied with discharge, and the power relations existing between discharge and suspended load. Therefore, this study uses hourly discharge and suspended concentration to simulate amount of suspended load for each torrential event in order to have better accuracy estimation comparing with daily discharge. Simulation results show that the concentration of suspended load was affected significantly by the changes of watershed landslide. There is a negative relationship between correction coefficient α of the model and collapse rate while correction coefficient β showing positive correlation with collapse rate. These imply that the more collapse rate, the worse the conservation ability of water resources in watershed, and the higher sediment concentration in discharge.
URI: http://hdl.handle.net/11455/89451
其他識別: U0005-3007201519400400
文章公開時間: 2018-08-07
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.