Please use this identifier to cite or link to this item:
標題: Study on the cross-resistance to ACCase inhibitors for goosegrass [Eleusine indica (L.) Gaertn.] and its enzymatic kinetic characters of target enzyme ACCase
作者: 黃譯正
Yi-Jheng Huang
關鍵字: herbicide
Eleusine indica
cross resistence
enzymatic kinetic
fatty acid metabolism
引用: 行政院農業委員會農業藥物毒物試驗所。2013。農藥資訊系統。臺中,臺灣。行政院農業委員會農業藥物毒物試驗所。。 林鈺荏。2013。伏寄普抗性生物型牛筋草之分子抗性機制研究。碩士論文。臺中,臺灣。國立中興大學農藝學系研究所。 莊榮輝。2007。生物化學基礎。國立臺灣大學生化科技學系。 黃文達、張新軒、蔡文福。1992。伏寄普對玉米之藥害與缺水及保護劑處理之關係。中華農藝 2: 57-67。 黃秀鳳。2000。水稻不同品種對除草劑伏寄普之忍受性差異。博士論文。臺北,臺灣。國立臺灣大學農藝學研究所。 費雯綺、王喻其、陳富翔、林曉民、李貽華。2013。植物保護手冊網路版。臺中,臺灣。行政院農業委員會農業藥物毒物試驗所。。 蔣永正、侯秉賦、王智屏、蔣慕琰。2007。牛筋草(Eleusine indica)對ACCase抑制型除草劑抗性之探討。植物保護學會會刊 49: 311-324。 Aksoy OD, Dane F, Sanal FE, Aktac T (2007) The effects of Fusilade (Fluazifop-p-butyl) on germination, mitotic frequency and α-amylase activity of lentil (Lens culinaris Medik.) seeds. Acta Physiol Plant 29:115-120 Andrew C (1992) Herbicides and plant physiology. 1st ed. London, U. K., Chapman & Hall. pp. 107-125 Asare-Boamah NK, Fletcher RA (1983) Physiological and cytological effects of BAS 9052 OH on corn (Zea mays) seedlings. Weed Sci 31:49-55 Ball DA, Frost SM, Bennett LH (2007) ACCase-inhibitor herbicide resistance in downy brome (Bromus tectorum) in Oregon. Weed Sci 55:91-94 Beckie HJ, Tardif FJ (2012) Herbicide cross resistance in weeds. Crop Prot 35:15-28 Belkebir A, De Paepe R, Tr?moli?res A, A?d F, Benhassaine-Kesri G (2006) Sethoxydim affects lipid synthesis and acetyl-CoA carboxylase activity in soybean. J Exp Bot 57:3553-3562 Clay DV, Hertz LB (1990) Effects of repeated applications of fluazifop-butyl, haloxyfop and sethoxydim on Elymus repens in strawberries. Weed Res 30:439-448 Cruz-Hipolito H, Osuna MD, Dom?nguez-Valenzuela JA, Espinoza N, De Prado R (2011) Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua) from Latin America. J Agric Food Chem 59:7261-7267 Dayan FE, Watson SB (2011) Plant cell membrane as a marker for light-dependent and light-independent herbicide mechanisms of action. Pestic Biochem Physiol 101:182-190 De Prado AR, Franco AR (2004) Cross-resistance and herbicide metabolism in grass weeds in Europe: biochemical and physiological aspects. Weed Sci 52:441-447 De Prado LJ, Osuna M, Heredia A, De Prado R. (2005) Lolium rigidum, a pool of resistance mechanisms to ACCase inhibitor herbicides. J Agric Food Chem 53:2185-2191 Dekker J, Duke SO (1995) Herbicide-resistance field crops. Adv Agron 54:69-116 D?lye C, Mat?jicek A, Michel S (2008) Cross-resistance patterns to ACCase-inhibiting herbicides conferred by mutant ACCase isoforms in Alopecurus myosuroides Huds. (black-grass), re-examined at the recommended herbicide field rate. Pestic Biochem Physiol 64:1179-1186 D?lye C (2005) Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci 53:728-746 Devine MD, Shimabukuro RH (1994) Resistance to acetyl coenzyme A carboxylase inhibiting herbicides. Herbicide Resistance in Plant. Boca Raton. FL: CRC Press. pp. 141-169 Duke SO, Holt JS, Hess FD, Christy AL (1991) Herbicide-resistant crops, Comments from CAST, No 1991–1, Council for Agricultural Science and Technology, Ames, IA Ekmekci Y, Terzioglu S (2005) Effects of oxidative stress induced by paraquat on wild and cultivated wheats. Pestic Biochem Physiol 83:69-81 Gronwald WJ (1991) Lipid biosynthesis inhibitors. Weed Sci 39:435-449 Guo Z, Huang M, Lu S, Zhao Y, Zhong Q (2007) Differential response to paraquat induced oxidative stress in two rice cultivars on antioxidants and chlorophyll a fluorescence. Acta Physiol Plant 29: 39-46 Harwood JL (1988) Fatty acid metabolism. Ann. Rev. Plant Physiol. Plant Mol Biol 39:101-138 Heap I, Glick H, Gasgow L, Vencill W (2014) The International Survey of Herbicide Resistant Weeds. Herbicide Resistant Action Committee. May 2014 Heap J, Knight R (1982) A population of ryegrass tolerant to the herbicide diclofop-methyl. J Aust Inst Agric Sci 48:156-157 Herbert D, Price LJ, Alban C, Dehaye L, Job D, Cole DJ, Pallett KE, Harwood JL (1996) Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves. Biochem J 318:997-1006 Hidayat I, Preston C (1997) Enhanced metabolism of fluazifop acid in a biotype of Digitaria sanguinalis resistant to the herbicide fluazifop-P-butyl. Pestic Biochem Physiol 57:137-146 Hidayat I, Preston C (2001) Cross-Resistance to Imazethapyr in a Fluazifop-P-butyl-Resistant Population of Digitaria sanguinalis. Pestic Biochem Physiol 71:190-195 Hoerauf RA, Shimabukuro RH (1979) The response of resistant and susceptible plants to diclofop-methyl. Weed Res 19:293-299 Horbowicz M, Sempruch C, Kosson R, Koczkodaj D, Walas D (2013) Effect of fluazifop-p-butyl treatment on pigments and polyamines level within tissues of non-target maize plants. Pestic Biochem Physiol 107:78-85 Janji? V, Milo?evi? D, ?alovi? I, T?r S (2007) Weed resistance to herbicides: Mechanisms and molecular basis. Acta Agr. Serbica. XII: 19-40 Konishi T, Sasaki Y (1994) Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. P Natl Acad Sci USA 91:3598-3601 Kotoula-Syka E, Tal A, Rubin B (2000) Diclofop-resistant Lolium rigidum from northern Greece with cross-resistance to ACCase inhibitors and multiple resistance to chlorsulfuron. Pest Manag Sci 56:1054-1058. Leach GE, Devine MD, Kirkwood RC, Marshall G (1995) Target Enzyme-Based Resistance to Acetyl-Coenzyme A Carboxylase Inhibitors in Eleusine indica. Pestic Biochem Phys 51:129-136 Liu W, Harrison DK, Chalupska D, Gornicki P, O'Donnell CC, Adkins SW, Haselkorn R, Williams RR (2007) Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc Natl Acad Sci USA 104:3627-3632 Luo XY, Matsumoto H (2002) Susceptibility of a broad-leaved weed, Acanthospermum hispidum, to the grass herbicide ?uazifop-butyl. Weed Biol Manag 2:98-103 Luo XY, Matsumoto H, Usui K (2001) Comparison of physiological effects of fluazifop-butyl and sethoxydim on oat (Avena sativa L.). Weed Biol Manag 1:120-127 Luo XY, Sunohara Y, Matsumoto H (2004) Fluazifop-butyl causes membrane peroxidation in the herbicide-susceptible broad leaf weed bristly starbur (Acanthospermum hispidum). Pestic Biochem Physiol 78:93-102 Mallory-Smith C, Retzinger EJ Jr (2003) Revised classification of herbicides by site of action for weed resistance management strategies. Weed Sci 17:605-619 Menendez J, De Prado R (1996) Diclofop-methyl cross-resistance in a chlorotoluron-resistant biotype of Alopecurus myosuroides. Pestic Biochem Physiol 56:123-133 Nikolau JB, Ohlrogge JB, Wurtele ES (2003) Plant biotin-containing carboxylases. Arch Biochem Biophys 414:211-222 Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant cell 7:957-970 Osuna MD, Glulart ICGR, Vidal RA, Kalsing A, Ruiz Santaella JP, De Prado R (2012) Resistance to ACCase inhibitors in Eleusine indica from Brazil involves a target site mutation. Planta Daninha 30:675-681 Richardson AD, Duigan SP, Berlyn GP (2002) An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol 153:185-194 Prather ST, Ditomaso JM, Holt JS (2000) Herbicide resistance: definition and management strategies. Agriculture and Natural Resources. Publication 8012 Prado RD, Jorr?n J, Garc?a-Torres L (1997) Cytochrome P450 endowed herbicide metabolism. Pages 101-108 in Weed and crop resistancd to herbicides. Netherlands: Kluwer Academic Ruiz-Santaella PJ, De Prado R, Wagner J, Fischer AJ, Gerhards R (2006) Resistance mechanisms to cyhalofop-butyl in a biotype of Echinochloa phyllopogon (Stapf) Koss. from California. J Plant Dis Protec 20:95-100 Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 6:1175-1184 Sasaki Y, Konishi T, Nagano Y (1995) The compartmentation of acetyl-coenzyme A carboxylase in plants. Plant Physiol 108:445-449 Seefeldt SS, Jensen JE, Fuerst EP (1995) Log-logistic analysis of herbicide dose-response relationships. Weed Technol 9:218-227 Shimabukuro RH, Hoffer BL (1994) Effects on transmembrane proton gradient and lipid biosynthesis in the mode of action of diclofop-methyl. Pestic Biochem Physiol 48:85-97 Swisher BA, Corbin FT (1982) Behavior of BAS-9052 OH in soybean (Glycine max) and johnsongrass (Sorghum halepense) plant and cell cultures. Weed Sci 30:640-650 Tal A, Rubin B (2004) Molecular characterization and inheritance of resistance to ACCase-inhibiting herbicides in Lolium rigidum. Pest Manag Sci 60:1013-1018 Tal A, Kotoula-Syka E, Rubin B (2000) Seed-bioassay to detect grass weeds resistant to acetyl coenzyme A carboxylase inhibiting herbicides. Crop Protec 19:467-472 Tharayil-Santhakumar N (2004) Mechanism of herbicide resistance in weeds. Herbicide Resistance Action Committee. T?pfer R, Martini N, Schell J (1995) Modification of plant lipid synthesis. Science 268:681-686 Tu M, Hurd C, Randall JM, The Nature Conservancy (2001) Weed control methods handbook: tools & techniques for use in natural areas. Logan, Utah, USA. paper 533. Walker KA, Ridley SM, Lewis T, Harwood JL (1988) Fluazifop, a grass-selective herbicide which inhibits acetyl-CoA carboxylase in sensitive plant species. Biochem J 254:307-310 Wakabayashi K, B?ger P (2004) Phytotoxic sites of action for molecular design of modern herbicides (Part 1) The photosynthetic electron transport system. Weed Biol Manag 4:8-18 Wilkinson RE (1981) Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl) -N-(2-methoxy-1-methylethyl)acetamide] inhibition of gibberellin precursor biosynthesis. Pestic Biochem Physiol 16:199-205 Yang X, Guschina IA, Hurst S, Wood S, Langford M, Hawkes T, Harwood J (2010) The action of herbicides on fatty acid biosynthesis and elongation in barley and cucumber. Pest Manag Sci 66:794-800 Yu Q, Collavo A, Zheng MQ, Owen M, Sattin M, Powles SB (2007) Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiol 145:547-558 Yu Q, Friesen LJS, Zhang XQ, Powles SB (2004) Tolerance to acetolactate synthase and acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pestic Biochem Physiol 78:21-30 Zhang XQ, Powles BS (2006) The molecular bases for resistance to acetyl co-enzyme A carboxylase (ACCase) inhibiting herbicides in two target-based resistant biotypes of annual ryegrass (Lolium rigidum) Planta 223:550-557
摘要: 牛筋草[Eleusine indica (L.) Gaertn.]為臺灣旱田常見之一年生禾本科雜草,常用以防治之除草劑如伏寄普(fluazifop-P-butyl)與西殺草(sethoxydim),兩者分別屬於抑制乙醯輔?A羧化酵素(acetyl-CoA carboxylase; ACCase; EC之芳烴氧苯氧羧酸?(aryloxyphenoxycarboxylic acids, APPs)及環己烯氧類(cyclohexanedione, CHDs)除草劑。本研究以對伏寄普具抗、感性之牛筋草作為材料,比較其對於兩種除草劑是否產生交叉抗性,並進一步分析ACCase酵素活性與酵素動力學特性之差異,探討其抗性機制。在伏寄普與西殺草施用後,根據傷害指數的劑量反應(dose response)分析得知,抗、感性生物型之間的抗感比在兩種除草劑施用下分別達18.9與19.0倍,顯示其存在交叉抗性。另外在除草劑施用下抗性生物型的葉綠素含量顯著高於感性生物型,而丙二醛(malondialdehyde, MDA)含量與電解質滲漏量(electrolyte leakage)則低於感性生物型,均顯示抗性生物型的細胞在兩種除草劑處理下所受到的傷害較低。而於ACCase酵素活性表現,在伏寄普處理下抗、感性生物型之I50分別為204.5 μM及10.7 μM,抗性指數為19.1;西殺草處理下則分別為64.0 μM及4.8 μM,抗性指數為13.4。此外,分別藉由不同濃度之ACCase酵素反應之三種不同基質acetyl-CoA、ATP與HCO3-進行酵素動力學分析。發現在兩種除草劑處理下,抗性生物型ACCase於三種不同反應基質下之Km值皆低於感性生物型,表示與基質有較高親合力。而抗性生物型之Vmax值於三種不同反應基質下皆高於感性生物型,表示於除草劑處理下,抗性生物型之ACCase反應效能高於感性生物型。最後藉分析抗、感性生物型牛筋草於除草劑處理下之初期脂肪酸代謝與長期脂肪酸變化,發現除草劑施用初期會使感性生物型整體不飽和脂肪酸下降18%,且抑制長鏈脂肪酸之含量,對極長鏈脂肪酸則無明顯抑制效果,而抗性生物型則皆無受到抑制。觀察除草劑施用21天內之長期脂肪酸變化可發現,感性生物型中、長鏈脂肪酸含量受到抑制,極長鏈脂肪酸則無明顯抑制,而抗性生物型則皆無受到抑制。綜合以上結果可知,ACCase型抑制劑主要抑制質體內之ACCase活性。
Goosegrass [Eleusine indica (L.) Gaertn.], a common annual poaseas weed of uplands in Taiwan. Fluazifop-P-butyl, the aryloxyphenoxycarboxylic acids (APPs), and sethoxydim, the cyclohexanedione (CHDs) ,which belong acetyl-CoA carboxylase (ACCase; EC inhibitor, are usually to be used to control poaseas weeds, such like goosegrass. In this study, in order to confirm whether the cross resistance of fluazifop and sethoxydim happen in fluazifop-resistent (R) and -susceptible (S) biotypes of goosegrass. The difference between enzyme activity and enzyme kinetic characters of ACCase of (R) and (S) biotypes under herbicides treatment were analysed to understand the resistance mechanism. According the dose response of injury index after treatment of fluazifop-P-butyl and sethoxydim, the resistance index is 18.9 and 19.0, respectively. It shows the cross resistance of fluazifop and sethoxydim exists in (R) biotype. The chrolophyll content of (R) biotype is significantly higher than (S) biotype, malondialdehyde (MDA) content and electrolyte leakage are both significantly lower than (S) biotype under treatment of herbicides. It represents damage of cells is lower in (R) biotype. And in the enzyme activity, (S) biotype decreased faster than (R) biotype in both treatment of fluazfop-acid and sethoxydim. The I50 of (R) and (S) biotypes under treatment of fluazifop-acid is 204.5 μM and 10.7 μM, respectively, and resistance index is 19.1. The I50 of (R) and (S) biotypes under treatment of sethoxydim is 64.0 μM and 4.8 μM, respectively, and resistance index is 13.4. Besides, the ACCase enzyme kinetic characters with three substrates acetyl-CoA, ATP and HCO3- were analysed to understand the reaction of ACCase to fluazfop-acid and sethoxydim. The Km of three substrates in (R) biotype is lower than (S) biotype under treatment of both herbicides. And The Vmax of three substrates in (R) biotype is higher than (S) biotype under treatment of both herbicides. Finally, the change of fatty acids biosynthesis of (R) and (S) biotypes under treatment of fluazifop-butyl and sethoxydim were analysed. In (S) biotype, the content of long chain fatty acids and unsaturated fatty acids were decreased under treatment of both herbicides, but not in (R) biotype.
其他識別: U0005-2811201416175062
文章公開時間: 2017-08-31
Appears in Collections:農藝學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.