Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89498
標題: Physiological characteristics and analysis of NADPH oxidase expression under different levels of submergence in rice seedling
水稻幼苗於不同淹水程度下之生理特性及NADPH氧化酶表現分析
作者: 吳郁嫻
Yu-Sian Wu
關鍵字: submergence
NADPH oxidase
realtime-PCR
淹水逆境
NADPH氧化酶
即時定量聚合酶連鎖反應
引用: 李炳和。(1996)。臺灣地區農作物風害與其因應對策之建議。臺灣農業。32: 37-47。 陳守泓,李炳和,姚銘輝,申雍。(2006)。臺灣地區年際異常氣象狀況對農業生產之影響。作物、環境與生物資訊。3: 307-316。 Akihito, K., Takeshi, F., Kouhei, O., Akihide, Y., Toshiaki, O. Shigeyuki, T., Ken, I., Keiji, T., Takeo, O., Yutaka, I., Yoko, N., Kazuya, I., Yasuomi, T., Kenji, G., and Kazuya, A. (2013). The rare sugar D-allose acts as a triggering molecule of rice defence via ROS generation. J. Exp. Bot. 64: 4939-4951. Alscher, R. G., Erturk, N., and Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53: 1331-1341. Apel, K. and Hirt, H. (2004). Reactive oxygen species: metabolism oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373-399. Asada, K. (1992). Ascorbate peroxidase - a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85: 235-241. Bailey-Serres, J., Fukao, T., Ronald, P., Ismail, A., Heuer, S., and Mackill, D. (2010). Submergence Tolerant Rice: SUB1's Journey from Landrace to Modern Cultivar. Rice 3: 138-147. Bailey-Serres, J., Lee, S. C., and Brinton, E. (2012). Waterproofing crops: effective flooding survival strategies. Plant Physiol. 160: 1698-1709. Bailey-Serres, J. and Voesenek, L. A. C. J. (2008). Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol. 59: 313-39. Bianka, S. and Margret, S. (2009). Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell 21: 184-196. Blokhina, O., Virolainen, E., and Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179-194. Boamfa, E. I., Ram, P. C., Jackson, M. B., Reuss, J., and Harren, F. J. M. (2003). Dynamic aspects of alcoholic fermentation of rice seedlings in response to anaerobiosis and to complete submergence: relationship to submergence tolerance. Ann. Bot. 91: 279-290. Bostock, R. M., Pye, M. F., and Roubtsova, T. V. (2014). Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu. Rev. Phytopathol. 52: 517-49. Bowler, C., Van Montagu, M., and Inze, D. (1992). Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43: 83-116. Castro-Concha, L. A., Escobedo, R. M., Miranda-Ham, M. L., Loyola-Vargas, V. M., and Vázquez-Flota, F. (2008). Measurement of cell viability in in vitro cultures. Plant Cell Culture Protocols. 2nd ed. Methods Mol. Biol. 318: 71-76. Cheng, C., Xu, X., Gao, M., Li, J., Guo, C., Song, J., and Wang, X. (2013). Genome-wide analysis of respiratory burst oxidase homologs in grape (Vitis vinifera L.). Int. J. Mol. Sci. 14: 24169-24186. Colmer, T. D. (2003). Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26: 17-36. Colmer, T. D., Armstrong, W., Greenway, H., Ismail, A. M., Kirk, G. J. D., and Atwell, B. J. (2014). Physiological mechanisms of flooding tolerance in rice: transient complete submergence and prolonged standing water. Progr. In Bot. 75: 255-307. Colmer, T. D. and Pedersen, O. (2008). Oxygen dynamics in submerged rice (Oryza sativa). New Phytol.178: 326-334. Damanik, R. I., Maziah, M., Ismail, M. R., Ahmad, S., and Zain, A. M. (2010). Responses of the antioxidative enzymes in Malaysian rice (Oryza sativa L.) cultivars under submergence condition. Acta. Physiol. Plant 32: 739-747. Das, A. and Uchimiya, H. (2002). Oxygen stress and adaptation of a semi-aquatic plant: rice (Oryza sativa). J. Plant Res. 115: 315-320. Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., and Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends Plant Sci. 19: 371-379. Drew, M. C., Cobb, B. G., Johnson, J. R., Andrews, D., Morgan, P. W., Jordan, W., and He, C. J. (1994). Metabolic acclimation of root tips to oxygen deficiency. Ann. Bot. 74: 281-286. Drew, M. C. and Sisworo, E. J. (1977). Early effects of flooding on nitrogen deficiency and leaf chlorosis in barley. New Phytol.79: 567-571. Ella, E. S., Kawano, N., Yamauchi, Y., Tanaka, K. and Ismail, A. M. (2003). Blocking ethylene perception enhances flooding tolerance in rice seedlings. Funct. Plant Biol. 30: 813-819. Fukao, T. and Bailey-Serres, J. (2008). Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proceed. Natl. Acad. Sci. 105: 16814-16819. Fukao, T., Xu, K., Ronald, P. C., and Bailey-Serres, J. (2006). A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18: 2021-2034. Fukao, T., Yeung, E., and Bailey-Serrers, J. (2012). The submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through hormonal regulation in rice. Plant Physiol. 160: 1795-1807. Groom, Q. J., Torres, M. A., Fordham-Skelton, A. P., Hammond-Kosack, K. E., Robinson, N. J., and Jones, J. D. (1996). rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J. 10: 515-522. Hasegawa, P. M., Bressan, R. A., Zhu, J. K., and Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463-99. Hattori, Y., Nagai, K., and Ashikari, M. (2011). Rice growth adapting to deepwater. Curr. Opin. Plant Biol.14: 100-105. Hattori, Y., Nagai, K., Furukawa, S., Song, X. J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., and Ashikari, M. (2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460: 1026-1030. Hirose, T., Scofield, G. N., and Terao, T. (2008). An expression analysis profile for the entire sucrose synthase gene family in rice. Plant Sci. 174: 534-543. Hückelhoven, R., Fodor, J., Trujillo, M., and Kogel, K. H. (2000). Barley Mla and Rar mutants compromised in the hypersensitive cell death response against Blumeria graminis f. sp. hordei are modified in their ability to accumulate reactive oxygen intermediates at sites of fungal invasion. Planta 212: 16-24. Ismail, A. M., Ella, E. S., Vergara, G. V., and Mackill, D. J. (2009). Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Ann. Bot. 103: 197-209. Ismail, A. M., Singh, U. S., Singh, S., Dar, M. H., and Mackill, D. J. (2013). The contribution of submergence-tolerant (Sub1) rice varieties to food security in flood-prone rainfed lowland areas in Asia. Field Crops Res.152: 83-93. Jackson, M. B. and Armstrong, W. (1999). Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1: 274-287. Jackson, M. B. and Ram, P. C. (2003). Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann. Bot. 91: 227-241. Kato, M. and Shimizu, S. (1985). Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant Cell Physiol. 26: 1291-1301. Kato, Y., Collard, B. C. Y., Septiningsih, E. M., and Ismail, A. M. (2014). Physiological analyses of traits associated with tolerance of long-term partial submergence in rice. AoB PLANTS 6: plu058. doi: 10.1093/aobpla/plu058. Kawano, N., Ella, E., Ito, O., Yamauchi, Y., and Tanaka, K. (2002). Comparison of adaptability to flash flood between rice cultivars differing in flash flood tolerance. Soil Sci. Plant Nutr. 48: 659-665. Keisuke, N., Hattori, Y., and Ashikari, M. (2010). Stunt or elongate? Two opposite strategies by which rice adapts to floods. J. Plant Res. 123: 303-309. Keller, T., Damude, H. G., Werner, D., Doerner, P., Dixon, R. A., and Lamb, C. (1998). A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10: 255-266. Kurusu, T., Kuchitsu, K., and Tada1, Y. (2015). Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinitystress. Front. Plant Sci. 6: 427. doi: 10.3389/fpls.2015.00427. Lasanthi-Kudahettige, R., Magneschi, L., Loreti, E., Gonzali, S., Licausi, F., Novi, G., Beretta, O., Vitulli, F., Alpi, A., and Perata, P. (2007). Transcript profiling of the anoxic rice coleoptile. Plant Physiol. 144: 218-231. Larkindale, J., Hall, J. D., Knight, M. R., and Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138: 882-897. Lin, C. C. and Kao, C. H. (1999). NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings. Plant and Soil 216: 147-153. Luo, Q., Zhu, Z., Yang, R., Qian, F., Yan, X., and Chen, H. (2015). Characterization of a respiratory burst oxidase homologue from Pyropia haitanensis with unique molecular phylogeny and rapid stress response. J. Appl. Phycol. 27: 945-955. MacAdam, J. W., Nelson, C. J., and Sharp, R. E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue1. Plant Physiol. 99: 872-878. Madoka, A., Takahiro, K., Mikiko, K., Hitoshi, S., Takuya, K., Takeshi, K., Rosalyn, B. Shim, A., Hidemi, K., Keisuke, N., and Andmotoyuki, A. (2014). Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell Environ. 37: 2313-2324. Ma, L., Zhang, H., Sun, L., Jiao, Y., Zhang, G., Chen, M., and Hao, F. (2011). NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+ /K+ homeostasis in Arabidopsis under salt stress. J. Exp. Bot. 63: 305-317. Marino, D., Andrio, E., Danchin, E. G. J., Oger, E., Gucciardo, S., Lambert, A., Puppo, A., and Pauly, N. (2011). A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning. New Phytol. 189: 580-592. Matile, P., Hortensteiner, S., Thomas, H., and Krautler, B. (1996). Chlorophyll breakdown in senescent leaves. Plant Physiol. 112: 1403-1409. Miklós, P., Uta von, R., Sebastian, G., Anita, D., Alexandra, P., Philippe, S., Günther, B., Levente, K., Balázs, B., and Jörg, D. (2009). Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. Plant Physiol. 151: 1459-1475. Mommer, L., Pons, T. L., Wolters-Arts, M., Venema, J. H., and Visser, E. J. W. (2005). Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiol. 139: 497-508. Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681. Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880. Naoyoshi, K., Evangelina, E., Osamu, I., Yamauchi, Y., and Tanaka, K. (2002). Comparison of adaptability to flash flood between rice cultivars differing in flash flood tolerance. Soil Sci. Plant Nutr. 48: 659-665. Panda, D. and Sarkar, R. K. (2013). Natural leaf senescence: probed by chlorophyll fluorescence, CO2 photosynthetic rate and antioxidant enzyme activities during grain filling in different rice cultivars. Physiol. Mol. Biol. Plants 19: 43-51. Panda, D., Sharma, S. G., and Sarkar, R.K. (2007). Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquat. Bot. 88: 127-133. Paoletti, F., Aldinucci, D., Mocali, A., and Caparrini, A. (1985). A sensitive spectrophotomertric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154: 536-541. Perata, P. and Voesenek, L. A. C. J. (2007). Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci. 12: 43-46. Pierik, R., van Aken, J. M., and Voesenek, L. A. C. J. (2009). Is elongation-induced leaf emergence beneficial for submerged Rumex species? Ann. Bot. 103: 353-357. Rajhi, I. Yamauchi, T., Takahashi H., Nishiuchi, S., Shiono, K., Watanabe, R., Mliki, A., Nagamura, Y., Tsutsumi, N., Nishizawa, N. K., and Nakazono, M. (2011). Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol. 190: 351-368. Sagi, M. and Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141: 336-340. Sandalio, L. M., Rodríguez-Serrano, M., del Río, L. A., and Romero-Puertas, M. C. (2009). Reactive oxygen species and signaling in cadmium toxicity. pp. 175-189. doi: 10.1007/978-3-642-00390-5_11. Sarkar, R. K., Das, S., and Ravi, I. (2001). Changes in certain antioxidative enzymes and growth parameters as a result of complete submergence and subsequent re-aeration of rice cultivars differing in submergence tolerance. J. Agron. Crop Sci. 187: 69-74 Satoh, K., Saji, S., Ito, S., Shimizu, H., Saji, H., and Kikuchi, S. (2014). Gene response in rice plants treated with continuous fog influenced by pH, was similar to that treated with biotic stress. Rice 7: 10. doi: 10.1186/s12284-014-0010-9. Sauter, M. (2000). Rice in deep water:'How to take heed against a sea of troubles'. Naturwissenschaften 87: 289-303. Setter, T. L. and Waters, I. (2003). Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant and Soil 253: 1-34. Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., and Yoshimura, K. (2002). Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53: 1305-1319. Singh, S., Mackill, D. J., and Ismail, A. M. (2009). Responses of SUB1 rice introgression lines to submergence in the field: yield and grain quality. Field Crops Res. 113: 12-23. Striker, G. G. (2012). Flooding Stress on Plants: Anatomical, Morphological and Physiological Responses. Botany doi: 10.5772/32922. Subbaiah, C. C., Palaniappan, A., Duncan, K., Rhoads, D. M., Huber, S. C., and Sachs, M. M. (2006). Mitochondrial localization and putative signaling function of sucrose synthase in maize. J. Biol. Chem. 281: 15625-15635. Suzuki, N., G. Miller, J. Morales, V. Shulaev, M. A. Torres, and R. Mittler. (2011). Respiratory burst oxidases: the engines of ROS signaling. Curr. Opin. Plant Biol. 14: 691-699. Suzuki, N. and Mittler, R. (2002). Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol. Plant. 126: 45-51. Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., and Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytol. 203: 32-43. Tang, B., Xu, S. Z., Zou, X. L., Zheng, Y. L., and Qiu, F. Z. (2010). Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging-tolerant and waterlogging-sensitive maize genotypes at seedling stage. Agricultural Sciences in China 9: 651-661. Thordal-Christensen, H., Zhang, Z., Wei, Y., and Collinge, D. B. (1997). Subcellular localization of H2O2 in plant. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11: 1187-1194. Torres, M. A. and Dangl, J. L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8: 397-403. Torres, M. A., Dang, J. L., and Jones, J. D. G. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. 99: 517-522. Tsai, K. J., Chou, S. J., and Shih, M. C. (2014). Ethylene plays an essential role in the recovery of Arabidopsis during post-anaerobiosis reoxygenation. Plant Cell Environ. 37: 2391-2405. Ueguchi-Tanaka, M., Hirano, K., Hasegawa, Y., Kitano, H., and Matsuoka, M. (2008). Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant. Plant Cell 20: 2437-2446. Ushimaru, T., Maki, Y., Sano, S., Koshiba, K., Asada, K., and Tsuji, H. (1997). Induction of enzymes involved in the ascorbate-dependent antioxidative system, namely ascorbate peroxidase, mono-dehydroascorbate reductase and dehydroascorbate reductase, after exposure to air of rice (Oryza sativa) seedlings germinated under water. Plant Cell Physiol. 38: 541-549. Vantoai, T. T., Saglio, P., Ricard, B., and Pradet, A. (1995). Developmental regulation of anoxic stress tolerance in maize. Plant Cell Environ. 18: 937-942. Voesenek, L. A. C. J., Colmer, T. D., Pierik, R., Millenaar, F. F., and Peeters, A. J. M. (2006). How plants cope with complete submergence. New Phytol. 170: 213-226. Wang, G. F., Li, W. Q., Li, W. Y., Wu, G. L., Zhou, C. Y., and Chen, K. M. (2013). Characterization of rice NADPH oxidase genes and their expression under various environmental conditions. Int. J. Mol. Sci. 14: 9440-9458. Wang, M. L., Wang, W. D. Zhao, Z., and Li, X. H. (2015). Molecular cloning, subcellular localization and expression analysis of NADPH oxidase gene from tea plant. Acta Hortic. Sinica 42: 95-103. Wang, X., Hou, C., Liu, J., He, W., Nan, W., Gong, H., Bi, Y. (2013). Hydrogen peroxide is involved in the regulation of rice (Oryza sativa L.) tolerance to salt stress. Acta. Physiol. Plant 35: 891-900. Willekens, H., Inze, D., Van Montagu, M., and Van Camp, W. (1995). Catalase in plants. Mol. Breed. 1: 207-228. Wong, H. L., Pinontoan, R., Hayashi, K., Tabata, R., Yaeno, T., Hasegawa, K., Kojima, C., Yoshiok, H., Ib, K., Kawasaki, T., and Shimamoto, K. (2007). Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19: 4022-4034. Xiong, L., and Zhu, J. K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ.25: 131-139. Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A. M., Bailey-Serres, J., Ronald, P. C., and Mackill, D. J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442: 705-708. Yamauchi, T., Watanabe, K., Fukazawa, A., Mori1, H., Abe, F., Kawaguchi, K., Oyanagi, A., and Nakazono, M. (2014). Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. J. Exp. Bot. 65: 261-273. Yang, C. Y. and Hong, C. P. (2015). The NADPH oxidase Rboh D is involved in primary hypoxia signaling and modulates expression of hypoxia-inducible genes under hypoxic stress. Environ. Exp. Bot. 115: 63-72. Yordanova, R. Y., Alexieva, V. S., and Popova, L. P. (2003). Influence of root oxygen deficiency on photosynthesis and antioxidant status in barley plants. Russian J. Plant Physiol. 50: 163-167. Yoshida, S., Forno, D. A., Cook, J. H., and Gomez, K. A. (1976). Routine procedure for growing rice plants in culture solution. Laboratory Manual for Physiological Studies of Rice. p. 61-66. Yoshie, Y., Goto, K., Takai, R., Iwano, M., Takayama, S., Isogai, A., and Che, F. S. (2005). Function of the rice gp91phox homologs OsrbohA and OsrbohE genes in ROS-dependent plant immune responses. Plant Biotechnol. J. 22: 127-135.
摘要: 隨著全球氣候改變,造成世界各地不同的自然災害。而豪大雨所造成的淹水逆境,使許多作物的產量下降或直接造成死亡。已知在淹水逆境下會產生活化氧族 (reactive oxygen species, ROS)之累積,而NADPH氧化酶為活化氧族來源之一。本實驗室先前以模式植物阿拉伯芥研究中指出NADPH氧化酶參與植物淹水逆境下之調控機制,因此本研究以水稻台稉九號為材料,觀測在不同淹水程度下,水稻之生理及分子變化。實驗結果顯示,於半淹或全淹處理下台稉九號幼苗地上部高度皆增加,且第三葉鞘長度快速增加。葉綠素含量則隨淹水時間增加而下降,又以全淹處理之葉綠素含量下降幅度更為明顯。DAB和NBT染色結果顯示,不同淹水程度下,過氧化氫和超氧陰離子均在葉尖累積,又以全淹處理累積程度較明顯。Evans blue染色結果呈現,全淹處理下對細胞之損害程度較半淹處理明顯。抗氧化酵素活性分析結果顯示,過氧化氫酶、抗壞血酸過氧化酶及超氧化物歧化酶活性於淹水六天和回氧一天後皆下降,且抗壞血酸過氧化酶活性於全淹處理較半淹處理明顯下降。過氧化物酶無論是否回氧活性皆明顯上升。即時定量聚合酶鏈鎖反應結果顯示,不論半淹或全淹處理下,OsRbohH及I表現量皆上升,而OsRbohA及G表現量皆下降。OsRbohC、D及F表現則於半淹處理上升而於全淹處理則下降。顯示水稻Rboh基因成員參與不同程度淹水逆境之調控。為進一步釐清淹水下,缺氧訊號傳遞路徑與滲透壓逆境之差異,以即時定量聚合酶鏈鎖反應結果顯示,不論半淹或全淹處理下,OsRbohA、G、H及I基因於淹水下外加300 mM氯化鈉及300 mM甘露醇處理下,表現量皆較淹水處理高。綜合以上實驗結果顯示,於不同淹水程度下,活化氧族之過氧化氫可能調控台稉九號幼苗之生理反應,及參與缺氧訊號途徑下相關基因之分子調控,且於淹水逆境施加滲透壓物質,透過OsRbohs之表現得知缺氧訊號與滲透壓訊號具有「crosstalk」之關係。
Many nature disasters were due to climate change in the world, such as heavy rain resulting in reduced crop yield or death. Many stresses cause reactive oxygen species (ROS) accumulation in plant such as flooding stress. The plasma membrane NADPH oxidase (respiratory burst oxidase homologs, Rbohs) is a main source of H2O2 in cells. Previous studies display AtRbohs involving in regulation mechanism under flooding stress. However, little is known about the regulation mechanism of rice Rbohs under flooding stress. In this study, we characterized the physiological response and the transcript profiles of Rbohs under different levels of flooding treatments in rice (Oryza sativa L. japonica, Tai-keng 9). The plants height was significant increased under partial submergence (PS) and full submergence (FS) compared to control. The 3rd leaf sheath plays an important role during plant growth under different levels of flooding stress. The contents of total chlorophyll and chlorophyll a, b were decreased with the increase in the flooding days; especially in FS treatment was shown significant reduced compare with control. DAB and NBT staining were shown that the accumulation of H2O2 and O2- in leaves tip under FS treatment were higher than PS treatment. The antioxidant activity was shown that CAT, SOD, APX activity were decreased under FS and PS treatment for 6 days or recovery for 1 day. The peroxidase activity was presented significant increased under FS and PS treatment for 6 days or recovery for 1 day. The qRT-PCR results were revealed that the transcript levels of OsRbohH and I were increased; OsRbohA and G were decreased in PS and FS conditions. The levels of OsRbohC, D and F were increased under PS condition, and decreased under FS condition. The NADPH oxidase were involved in hypoxia signaling pathway under different levels of flooding stress. Furthermore, the transcript levels of OsRbohA, G, H and I were increased under submergence combined with 300 mM NaCl or 300 mM Mannitol compare with submergence only. Taken together, our results present that under different levels of submergence, the effect on the length of plants, the contents of total chlorophyll and the activity of antioxidants. The transcription profiles of 9 Rbohs in TK9 under different levels of submergence were characterized. This studies also providing evidence of differences between hypoxia-signaling and osmotic-stress signaling, and of cross-talk between them.
URI: http://hdl.handle.net/11455/89498
其他識別: U0005-0408201512154900
文章公開時間: 2017-08-06
Appears in Collections:農藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.