Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89533
標題: 牛筋草對伏寄普之抗性生理機制研究-代謝解毒反應
Resistance mechanism of goosegrass (Eleusine indica (L.) Gaertn.) resistant to fluazifop-butyl - metabolic detoxification
作者: Wan-Ting Lin
林婉婷
關鍵字: herbicide
resistance
weed
metabolism
fluazifop-P-butyl
除草劑
抗性
雜草
代謝
伏寄普
引用: 黃秀鳳、張新軒、蔡文福。2001。水稻不同品種對除草劑伏寄普之忍受性差異。中華民國雜草學會會刊 2:61-75。 費雯綺、王喻其、陳富翔、林曉明、李貽華。2013。植物保護手冊。行政院農委會農業藥物毒物試驗所。台中,台灣。http://www.tactri.gov.tw/wSite/ct?xItem=3691&ctNode=333&mp=11 (Access date: 07, 2014) 蔣永正、侯秉賦、王智屏、蔣慕琰。2007。牛筋草(Eleusine indica)對ACCase抑制型除草劑抗性之探討。植物保護學會會刊 49:311-324。 Amunom I, Kieter LJ, Tamasi V, Cai J, Conklin DJ, Sivastava S, Martin MV, Guengerich FP, Prough RA (2011) Cytochromes P450 catalyze the reduction of α, β-unsaturated aldehydes. Chem Res Toxicol 24:1223-1230 Asare-Boamah NK, Fletcher RA (1983) Physiological and cytological effects of BAS 9052 OH on corn (Zea mays) seedlings. Weed Sci 31:49-55 Ashrafuzzaman M, Islam MR, Ismail MR, Shahidullah SM, Hanafi MM (2009) Evaluation of six aromatic rice varieties for yield and yield contributing characters. Int J Agric Biol 11:616-620 Bakkali Y, Ruiz-Santaella JP, Osuna MD, Wagner J, Fischer AJ, De Prado R (2007) Late watergrass (Echinochloa phyllopogon): mechanisms involved in the resistance to fenoxaprop-p-ethyl. J Agric Food Chem 55:4052-4058 Ball DA, Frost SM, Bennett LH (2007) ACCase-inhibitor herbicide resistance in downy brome (Bromus tectorum) in Oregon. Weed Sci 55:91-94 Belkebir A, De Paepe R, Tr?moli?res A, A?d F, Benhassaine-Kesri G (2006) Sethoxydim affects lipid synthesis and acetyl-CoA carboxylase activity in soybean. J Exp Bot 57:3553-3562 Berrueta LA, Alonso-Salces RM, H?berger K (2007) Supervised pattern recognition in food analysis. J Chromatogr A 1158:196-214 Bhatti KH, Parveen T, Farooq A (2013) A critical review on herbicide resistance in plants. World Appl Sci J 27:1027-1036 Bradley KW, Wu J, Hatzios KK, Hagood ES Jr (2001) The mechanism of resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in a johnsongrass biotype. Weed Sci 49:477-484 Bravin F, Zanin G, Preston C (2001) Resistance to diclofop-methyl in two Lolium spp. populations from Italy: studies on the mechanism of resistance. Weed Res 41:461-473 Chandrasena JPNR, Sagar GR (1987) Effect of fluazifop-butyl on the chlorophyll content, fluorescence and chloroplast ultrastructure of Elymus repens (L.) Gluld. leaves. Weed Res 27:103-112 Chow PNP, LaBerge DE (1978) Wild oat herbicide studies. 2. Physiological and chemical changes in barley and wild oats treated with diclofop-methyl herbicide in relation to plant tolerance. J Am Chem Soc 26:1134-1137 Cocker KM, Coleman JOD, Blair AM, Clarke JH, Moss SR (2000) Biochemical mechanisms of cross-resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in populations of Avena spp. Weed Res 40:323-344 Cocker KM, Northcroft DS, Coleman JOD, Moss SR (2001) Resistance to ACCase-inhibiting herbicides and isoproturon in UK populations of Lolium multiflorum: mechanisms of resistance and implications for control. Pestic Biochem Physiol 57:587-597 Cruz-Hipolito H, Osuna MD, Dom?nguez-Valenzuela JA, Espinoza N, De Prado R (2011) Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua) from Latin America. J Agric Food Chem 59:7261-7267 Dayan FE, Watson SB (2011) Plant cell membrane as a marker for light-dependent and light-independent herbicide mechanisms of action. Pestic Biochem Physiol 101:182-190 De Prado RA, Franco AR (2004) Cross-resistance and herbicide metabolism in grass weeds in Europe: biochemical and physiological aspects. Weed Sci 52:441-447 De Prado JL, Osuna MD, Heredia A, De Prado R. (2005) Lolium rigidum, a pool of resistance mechanisms to ACCase inhibitor herbicides. J Agric Food Chem 53:2185-2191 De Prado R, Osuna MD, Fischer AJ (2004) Resistance to ACCase inhibitor herbicides in a green foxtail (Setaria viridis) biotype in Europe. Weed Sci 52:506-512 D?lye C (2005) Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci 53:728-746 D?lye C, Mat?jicek A, Michel S (2008) Cross-resistance patterns to ACCase-inhibiting herbicides conferred by mutant ACCase isoforms in Alopecurus myosuroides Huds. (black-grass), re-examined at the recommended herbicide field rate. Pestic Biochem Physiol 64:1179-1186 Dickson RL, Andrews M, Field RJ, Dickson EL (1990) Effect of water stress, nitrogen, and gibberellic acid on fluazifop and glyphosate activity on oats (Avena sativa). Weed Sci 38:54-61 Doohan DJ, Monaco TJ, Sheets TJ, Leidy RB (1986) Residues and efficacy of fluazifop-butyl in strawberries. Weed Res 26:89-98 Ekmekci Y, Terzioglu S (2005) Effects of oxidative stress induced by paraquat on wild and cultivated wheats. Pestic Biochem Physiol 83:69-81 Everman W, Glasgow L, Ingegneri L, Schroeder J, Shaw D, Soteres J, Stachler J, Tardif F (2011) Weed Science Society of America. http://www.wssa.net/LessonModules/herbicide-resistant-weeds/Lesson3/index.html. (Access date:12, 2012) Grafstrom LD Jr, Nalewaja JD (1988) Uptake and translocation of fluazifop in Green Foxtail (Setaria viridis). Weed Sci 36:153-158 Gronwald JW (1991) Lipid biosynthesis inhibitors. Weed Sci 39:435-449 Guengerich FP, Johnson WW (1997) Kinetics of Ferric Cytochrome P450 reduction by NADPH-cytochrome P450 reductase: rapid reduction in the absence of substrate and variations among cytochrome P450 systems. Biochem 36:14741-14750 Guo Z, Huang M, Lu S, Zhao Y, Zhong Q (2007) Differential response to paraquat induced oxidative stress in two rice cultivars on antioxidants and chlorophyll a fluorescence. Acta Physiol Plant 29: 39-46 Harker KN, Dekker J (1988) Temperature effects on translocation patterns of several herbicides within quackgrass (agropyron repens). Weed Sci 36:545-552 Harwood JL (1988) Fatty acid metabolism. Ann Rev Plant Physiol Plant Mol Biol 39:101-138 Heap I, Soteres J, Glasgow L (2014) The International Survey of Herbicide Resistant Weeds. Herbicide Resistant Action Committee. http://www.weedscience.org/In.asp. (Access date: 05, 2014) Heap J, Knight R (1982) A population of ryegrass tolerant to the herbicide diclofop-methyl. J Aust Inst Agric Sci 48:156-157 Heap IM, Murray BG, Loeppky HA, Morrison IN (1993) Resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in wild oat (Avena fatua). Weed Sci 41:232-238 Hendley P, Dicks JW, Monaco TJ, Slyfield SM, Tummon OJ, Barrett JC (1985) Translocation and metabolism of pyridinyloxyphenoxypropionate herbicides in rhizomatous quackgrass (Agropyron repens). Weed Sci 33:11-24 Hidayat I, Preston C (1997) Enhanced metabolism of fluazifop acid in a biotype of Digitaria sanguinalis resistant to the herbicide fluazifop-P-butyl. Pestic Biochem Physiol 57:137-146 Hochberg O, Sibony M, Rubin B (2007) The response of ACCase-resistant Phalaris paradoxa populations involves two different target site mutations. Weed Res 49:37-46 Horbowicz M, Sempruch C, Kosson R, Koczkodaj D, Walas D (2013) Effect of fluazifop-p-butyl treatment on pigments and polyamines level within tissues of non-target maize plants. Pestic Biochem Physiol 107:78-85 Kell JJ, Meggitt WF, Penner D (1984) Absorption, translocation, and activity of fluazifop-butyl as influenced by plant growth stage and environment. Weed Sci 32:143-149 Knoche M, Noga G, Lenz F (1992) Surfactant-induced phytotoxicity evidence for interaction with epicuticular wax fine structure. Crop Protec 11:51-56 Kirkwood RC (1999) Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pestic Sci 55:69-77 Kinard SL, Anderson D, Eckel WP, Nielsen A, Ollinger C (2004) Fluazifop-P-butyl. Report of the metabolism assessment review committee. Uniter States Environmental Protection Agency. No. 0052680 Kotoula-Syka E, Tal A, Rubin B (2000) Diclofop-resistant Lolium rigidum from northern Greece with cross-resistance to ACCase inhibitors and multiple resistance to chlorsulfuron. Pest Manag Sci 56:1054-1058 Kreuz K, Tommasini R, Martinoia E (1996) Old Enzymes for a new job. Plant Physiol 111:349-353 Levandi T, P?ssa T, Vaher M, Ingver A, Koppel R, Kaljurand M (2014) Principal component analysis of HPLC-MSMS patterns of wheat (Triticum aestivum) varieties. P Est Acad Sci 63:86-92 Lagan? A, Fago G, Marino A, Penazzi VM (2000) Liquid chromatography mass spectrometry tandem for multiresidue determination of selected post-emergence herbicides after soil column extraction. Anal Chim Acta 415:41-56 Luo X, Matsumoto H (2002) Susceptibility of a broad-leaved weed, Acanthospermum hispidum, to the grass herbicide ?uazifop-butyl. Weed Biol Manag 2:98-103 Luo X, Matsumoto H, Usui K (2001) Comparison of physiological effects of fluazifop-butyl and sethoxydim on oat (Avena sativa L.). Weed Biol Manag 1:120-127 Luo X, Sunohara Y, Matsumoto H (2004) Fluazifop-butyl causes membrane peroxidation in the herbicide-susceptible broad leaf weed bristly starbur (Acanthospermum hispidum). Pestic Biochem Physiol 78:93-102 Mabb LP, Price CE (1986) Fluazifop-butyl activity on Imperata cylindrica (L.) P. Beauv. I. Studies on phytotoxicity, spray adhesion and herbicide uptake. Weed Res 26:301-305 Mallory-Smith CA, Retzinger EJ Jr (2003) Revised classification of herbicides by site of action for weed resistance management strategies. Weed Sci 17:605-619 Massbank Database (2014) Institute for Advanced Biosciences, Keio University, Graduate School of Information Science, Nara Institute of Science and Technology, Graduate School of Frontier Sciences, University of Tokyo, Department of Metabolome, Graduate School of Medicine, The University of Tokyo, Department of Chemistry, Faculty of Science, Nara Women's University, Sekisui Medical co., ltd. http://www.massbank.jp/ (Access date:07, 2014) Menendez J, De Prado R (1996) Diclofop-methyl cross-resistance in a chlorotoluron-resistant biotype of Alopecurus myosuroides. Pestic Biochem Physiol 56:123-133 Menendez J, Jorrin J, Romera E, De Prado R (1994) Resistance to chlorotoluron of a slender foxtail (Alopecurus myosuroides) biotype. Weed Sci 42:340-344 Metabolite Link Metabolomics Database (2014) The Scripps Research Institute. http://metlin. scripps.edu/index.php. (Access date:07,2014) N?gre M, Gennari M, Andreoni V, Ambrosoli R, Celi L (1993) Microbial Fabolism of fluazifop-butyl. J Environ Sci Health B 25:545-576 Nikolau BJ, Ohlrogge JB, Wurtele ES (2003) Plant biotin-containing carboxylases. Arch Biochem Biophys 414:211-222 NYSDEC (2014) Registration of the major change in labeling for the product fusilade DX herbicide (EPA Reg. No. 100-1070) containing the active ingredient fluazifop-p-butyl (chemical code 122809) Osuna MD, Glulart ICGR, Vidal RA, Kalsing A, Ruiz Santaella JP, De Prado R (2012) Resistance to ACCase inhibitors in Eleusine indica from Brazil involves a target site mutation. Planta Daninha 30:675-681 Powles SB, Howat PD (1990) Herbicide-resistant weeds in Australia. Weed Sci 4:178-185 Prather TS, Ditomaso JM, Holt JS (2000) Herbicide resistance: definition and management strategies. Agriculture and Natural Resources. Publication 8012 Ruiz-Santaella JP, De Prado R, Wagner J, Fischer AJ, Gerhards R (2006a) Resistance mechanisms to cyhalofop-butyl in a biotype of Echinochloa phyllopogon (Stapf) Koss. from California. J Plant Dis Protec 20:95-100 Ruiz-Santaella JP, Heredia A, De Prado R (2006b) Basis of selectivity of cyhalofop-butyl in Oryza sativa L. Planta 223:191-199 Sasaki Y, Konishi T, Nagano Y (1995) The compartmentation of acetyl-coenzyme A carboxylase in plants. Plant Physiol 108:445-449 Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 6:1175-1184 Seefeldt SS, Jensen JE, Fuerst EP (1995) Log-logistic analysis of herbicide dose-response relationships. Weed Technol 9:218-227 Singh S (2005) Characterization of the activity of fluazifop-butyl on bristly star (Acanthospermum hispidum DC.) and trimethylsulfonium salt of glyphosate on round-upready cotton (Gossypium hirsutum L.). Master thesis. Lake Alfred; Cirtus Research and Education Center, University of Florida Soteres J, Vitolo D, Schultz M, Glasgow L, Obrigawitch T, Strek H, Menne H, Beffa R, Pawlak J, Evans R, Whitehead J (2012) Herbicide Resistance Action Committee. http://www.hracglobal.com/Glossary.aspx. (Access date:12, 2012) Stock D, Holloway PJ (1993) Possible mechanisms for surfactant-induced foliar uptake of agrochemicals. Pestic Sci 38:165-177 Stoltenberg DE, Wiederholt RJ (1995) Giant foxtail (Setaria faberi) resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Sci 43:527-535 Sun Q, Harper TW, Dierks EA, Zhang L, Chang S, Rodrigues AD, Marathe P (2011) 1-aminobenzotriazole, a known cytochrome P450 inhibitor, is a substrate and inhibitor of N-acetyltransferase. Drug Metab Dispos 39:1674-1679 Tal A, Kotoula-Syka E, Rubin B (2000) Seed-bioassay to detect grass weeds resistant to acetyl coenzyme A carboxylase inhibiting herbicides. Crop Protec 19:467-472 Tal A, Romano ML, Stephenson GR, Schwan AL, Hall JC (1993) Glutathione conjugation: a detoxification pathway for fenoxaprop-ethyl in barley, crabgrass, oat, and wheat. Pestic Biochem Physiol 46:190-199 Tal A, Zarka S, Rubin B (1996) Fenoxaprop-P resistance in Phalaris minor conferred by an insensitive acetyl-coenzyme A carboxylase. Pestic Biochem Physiol 56:134-140 Tamura H, Knoche M, Bukovac MJ (2001) Evidence for surfactant solubilization of plant epicuticular wax. J Agric Food Chem 49:1809-1816 Tardif JF, Powles SB (1994) Herbicide multiple-resistance in a Lolium rigidum biotype is endowed by multiple mechanisms: isolation of a subset with resistant acetyl-CoA carboxylase. Physiol Plant 91:488-494 Tauler R, Per?-Trepat E, Lacorte S, Barcel? D (2004) Chemometrics modelling of environmental data. iEMSs Complexity and integrated resources management. International congress: 'Complexity and integrated resources management'. Vencill WK, Nichols RL, Webster TM, Soteres JK, Mallory-Smith C, Burgos NR, Johnson WG, McClelland MR (2012) Herbicide resistance: toward an understanding of resistance development and the impact of herbicide-resistant crops. Weed Sci Special Issue:2-30 Wakabayashi K, B?ger P (2004) Phytotoxic sites of action for molecular design of modern herbicides (Part 1): The photosynthetic electron transport system. Weed Biol Manag 4:8-18 Werck-Reichhart D, Hehn A, Didierjean L (2000) Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci 5:116-123 Wiederholt RJ, Stoltenberg DE (1995) Cross-resistance of a large crabgrass (Digitaria sanguinalis) accession to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Technol 9:518-524 Wilkinson RE (1981) Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl) -N-(2-methoxy-1-methylethyl)acetamide] inhibition of gibberellin precursor biosynthesis. Pestic Biochem Physiol 16:199-205 Wong PSH, Cook RG (1997) Ion trap mass spectrometry. Curr Sep Drug Dev 16 Yang C, Dong L, Li J, Moss SR (2007) Identification of japanese foxtail (Alopecurus Japonicus) resistant to haloxyfop using three different assay techniques. Weed Sci 55:537-540 Yu Q, Collavo A, Zheng M, Owen M, Sattin M, Powles SB (2007) Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiol 145:547-558 Yu Q, Friesen LJS, Zhang XQ, Powles SB (2004) Tolerance to acetolactate synthase and acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pestic Biochem Physiol 78:21-30 Yuan JS, Tranel PJ, Stewart CN Jr (2006) Non-target-site herbicide resistance: a family business. Trends Plant Sci 45:1360-1385 Yun M, Yogo Y, Miura R, Yamasue Y, Fischer AJ (2005) Cytochrome P-450 monooxygenase activity in herbicide-resistant and -susceptible late watergrass (Echinochloa phyllopogon). Pestic Biochem Physiol 83:107-114 Zabkiewicz JA (2000) Adjuvants and herbicidal efficacy-present status and future prospects. Weed Res 40:139-149 Zhang C, Ni H, Wei S, Huang H, Liu Y, Cui H, Sui B, Zhang M, Guo F (2009) Current advances in research on herbicide resistance. Sci Agric Sin 42:1274-1289
摘要: 禾草類除草劑(graminicides)屬於選擇性早期萌後型除草劑,此?除草劑之作用機制為抑制催化脂肪酸合成第一步驟之酵素-乙醯輔?A羧化酵素(acetyl-CoA carboxylase; ACCase; EC 6.4.1.2)之活性,進而抑制脂肪酸合成,破壞細胞膜之完整性。本研究為了解牛筋草[Eleusine indica (L.) Gaertn.]對ACCase抑制型除草劑伏寄普(fluazifop-P-butyl)產生抗性之機制,分析牛筋草抗、感性生物型(biotype)植株對於該藥劑之吸收、轉運以及代謝之差異。結果顯示在藥劑吸收方面,牛筋草抗感性生物型之間並無顯著差異,而在轉運方面,抗性生物型雖然對於伏寄普具有較高之轉運能力,能將20% 14C-fluazifop-P-butyl及其代謝物轉運至上位葉,但於伏寄普處理後7天,處理葉與上位葉存在之fluazifop-buty約90%已轉變成伏寄普酸(fluazifop acid)及其代謝物(metabolites),尤其抗性生物型具有較高比例之代謝物,因此推測代謝能力差異可能是造成抗性之原因之一。 根據質譜儀分析結果顯示,於正離子模式下出現m/z 512, 432, 423, 415, 314以及160等6個訊號以及在負離子模式下出現m/z 788, 623, 593以及162等4個訊號為抗、感生物型共有之代謝物,但除m/z 162之外,在抗性生物型中均表現較強訊號。正離子模式下於出現m/z 202.180、219.012、255.944、288.963、310.156與340.865等6個訊號為抗性生物型中獨有之代謝物, m/z 333.011、525.977、631.027、647.003、688.030、827.067、941.060、989.120、182.034、191.039、200.044、214.918、265.023、322.937、328.887、338.343、352.948、365.107、374.038、381.080與394.920等21個訊號為感性生物型中獨有之代謝物,顯示抗、感生物型有不同的代謝物剖面(profile)。從發現之代謝物出現2-[4-(5-trifluoromethyl-2-pyridyloxy)phenoxy] propanol、5-trifluoromethyl-2-hydroxy-pyridine與5-trifluoromethyl-2- pyridone,推測可能與細胞色素P450還原?(cytochrome P450 reductase, CYP; EC 1.2.6.4)參與之還原反應(reduction)有關。因此,進一步分析細胞色素P450還原?活性。 酵素活性分析結果顯示,經伏寄普處理後抗性生物型具有較高之細胞色素P450還原?活性,推測在牛筋草抗性生物型中伏寄普(fluazifop-P-butyp)經水解作用(hydrolysis)形成伏寄普酸(fluazifop acid)後,可能透過細胞色素P450還原?行還原反應(reduction)形成2-[4-(5-trifluoromethyl-2-pyridyloxy)phenoxy]propanol,可能再轉變成4-(5-trifluoromethyl-2-puridyl)oxyphenol之後,最後再透過細胞色素P450還原?行還原反應(reduction)形成5-trifluoromethyl-2-hydroxy- pyridine與5-trifluoromethyl-2-pyridone。
Fluazifop-P-butyl, a selective graminicide, is widely used to control annual grass weeds. The action mechanism of this herbicide is to inhibit the activity of acetyl-CoA carboxylase (ACCase; EC 6.4.1.2), which is responsible for the lipid biosynthesis. In order to explore the resistance mechanism, resistant (R)- and susceptible (S)-biotype of goosegrass [Eleusine indica (L.) Gaertn.] treated with 14C-fluazifop-P-butyl were studied. Although no significant difference of herbicide uptake between R- and S-biotype, and even the higher translocation rate of 14C-fluazifop and its metabolites in R-biotype was found, it is suggested that the herbicide metabolism is involved in resistance mechanism due to the more polar metabolites were found in R-biotype. According to the results of mass spectrum analysis, six signals including m/z 512, 432, 423, 415, 314 and 160 under POS scanning mode, and four signals including m/z 788, 623, 593 and 162 under NEG scanning mode appeared in both R- and S-biotype. These signals had stronger intensities in R-biotype, except m/z 162. Interestingly, six signals including m/z 202.180, 219.012, 255.944, 288.963, 310.156 and 340.865, only appeared in R-biotype, and twenty-one signals including m/z 333.011, 525.977, 631.027, 647.003, 688.030, 827.067, 941.060, 989.120, 182.034, 191.039, 200.044, 214.918, 265.023, 322.937, 328.887, 338.343, 352.948, 365.107, 374.038, 381.080 and 394.920 only appeared in S-biotype, suggesting different metabolite profile between R- and S-biotype. In this metabolite study, the generation of 2-[4-(5-trifluoro- methyl-2-pyridyloxy)phenoxy] propanol, 5-trifluoromethyl-2-hydroxy- pyridine and 5-trifluoromethyl-2-pyridine suggested that certain reduction reaction might be happened. Therefore, we attempted to clarify the role of cytochrome P450 reductase (CYP; EC 1.2.6.4) in fluazifop metabolism. Coupled with the study on the activity of cytochrome P450 reductase, it is suggests that fluazifop-P-butyl in goosegrass was hydrolyzed to fluazifop acid, and then reduced to 2-[4-(5-trifluoromethyl-2-pyridyloxy) phenoxy] propanol by cytochrome P450 reductase. Subsequently, 4-(5-trifluoromethyl-2-puridyl)oxyphenol was formed, and both 5-tri- fluoromethyl-2-hydroxy-pyridine and 5-trifluoromethyl-2-pyridone were formed through reduction catalyzed by cytochrome P450 reductase.
URI: http://hdl.handle.net/11455/89533
其他識別: U0005-2811201416190294
文章公開時間: 2017-08-31
Appears in Collections:農藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.