Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89538
標題: 不同光質與光期促進貫葉連翹(Hypericum perforatum)開花之研究
Effects of light quality and photoperiod on flowering of Hypericum perforatum
作者: YUYA ASAMI
淺見祐彌
關鍵字: St John's Wort
night-break
flowering
seed production
day-length extension
貫葉連翹
暗期光中斷
開花
種子生產
延長光照
引用: 久松完。2014。電照栽培基礎実践56-147。誠文堂。東京。 于志斌、關慶松。2015。美國:草藥類膳食補充劑需求穩定增長。中國中醫藥報4: 326-335 王隆華。1992。植物開花生理。植物生理與分子生物學進展。科學出版社: 300-309。 呂振庭。2007。貫葉連翹繁殖與生產之研究。碩士論文。台中: 國立中興大學農藝學系研究所。 易美秀。2014。R/FR值的調控方法及R/FR值對花卉開花之影響。臺中區農業改良場特刊122:309-314。 姜波、沈宗根、阮仙利、呂洪飛。2012。貫葉連翹的開花動態與繁殖系統研究。廣西植物 32: 457-463。 侯金日、楊雅斯、王淑敏。1999。不同光質對兩種鬼針屬(Bidens)植物種子發芽之影響。中華民國雜草學會會刊 20: 39-54。 馬月萍、戴思蘭。2003。植物花芽分化機理研究進展。分子植物育種1: 539-545。 張同吳。2004。台灣常見保健植物之栽培與利用。國際藥用植物產業發展研討會專刊157-174。 張承晉。2006。台灣中草藥產業競爭力分析。台灣生物產業。豐年56: 46-48。 張家綸、林正宏、鄧資新。2010。光週期及光強度影響聖約翰草種子發芽及幼苗生長之探討。碩士論文。台中:國立中興大學生命科學院。 陳曉、李思遠、吳連成。2006。光週期影響植物花時的分子機制。西北植物學報 26: 1490-1499。 陳麗筠。2004。仙丹花花芽分化和開花調節。國立中興大學園藝學系。博士論文。台中。 楊玉珍、袁秀云。2005。光敏色素分子及其信號傳導途徑。生物技術通訊。 楊純明、李裕娟。2009。從植物之光周期看發光二極體在農業生產上之應用潛力。作物、環境與生物資訊6: 192-200。 農研機構。2015。主要花類開花対光質応答反応。農業 食品産業技術総合研究機構。 蔡允真。2009。台灣地區貫葉連翹種子生產與周年栽培生產之研究。碩士論文。台中: 國立中興大學農藝學系研究所。 Anita, H., A. Eva, D. J. Sheerin, O. Dobos, P. Bernula, and F. Nagy. 2015. The Plant Journal. pp. 13-16. Bagdonaite, E., Pavol, M., Miroslav, R., and Juozas, L. 2012. Variation in concentrations of major bioactive compounds in Hypericum perforatum L. from Lithuania. Industrial Crops and Products 302-308. Baskin, C. C., and J. M. Baskin. 1998. Seeds: ecology, biogeo-graphy, and evolution of dormancy and germination. In: germination ecology of seeds with physical dormancy. pp101-124. Academic Press, San Diego. Borchet, R., S. S. Renner, Z. Calle, D. Navarrete, A. Tye, L Gautier, R    Spichiger, and P. V. Hildebrand. 2005. Photoperiodic induction of   synchronous flowering near the Equator. Nature 433: 627-629. Briskin, D. P., A. Leroy, and M, Gawienowski. 2000. Influence of nitrogen on the production of hypericins by St. John's wort. Plant Physiol. Biochem. 38: 413-420. Cirak, C., K. Kevseroglu, and A. K. Ayan. 2007. Breaking of seed dormancy in a Turkish endemic Hypericum species: Hypericum aviculariifolium subsp. depilatum var. depilatum by light and some pre-soking treatments. J. Arid Environ. 68: 159-164. Cui, X. H. Debasis, C. Eun-Jung, L., and Kee-Yoeup, P. 2010. Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresource Technology 4708-4716. Cuneyt, C., A. K. Ayan, and K. Kevseroglu. 2004. The Effects of Light and some Presoaking Treatments on Germination Rate of St. John's Worth (Hypericum perforatum L.) Seeds. Pakistan J. Biol. Sci. 7:182-186. Goldschmidt, E. E., N. Aschkenazi, Y. Herzano, A. A. Schaffer, and S. P.   Monselise. 1986. A role for carbohydrate leaves in the control of flowering in citrus. Sci. Hortic. 26: 159-166. Grechi, I., P. Vivin, G. Hilbert, S. Milin, T. Robert, J. P. Gaudillere. 2005. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine. Environ. Exp. Bot. 59: 139-149. Gruenwald, J. 1999. The world market for hypericum products. pp. 22-25. Nutraceuticals World, Giessen, Germany. Halevy, A. H. 1987. Assimilate allocateon and flower development In: Manipulatio of flowering. eds. Atherton. G. Butterworths, London. pp. 363-378. Hartmann, H. T., W. J. Flocker, and A. M. Kofranek. 1981. Growth, development, and utilization of cultivated plants. Prentice Hall. pp. 256-257. Englewood cliffs, NJ, USA. Haroon. K, and Abdur. Rauf. 2014. Medicinal Plants: Economic Perspective and Recent Developments. World Applied Sciences Journal 31 (11): 1925-1929. Hassanpouraghdam M. B., S. J. Tabatabaie, H. Nazemiyeh, and A. flatuni. 2008. N and K nutrition levels affect growth and essential oil cotent of costmary (Tanacetum balsamita L.). J. Food. Agric. Environ. 6: 145-149. Hernández, R. and C. Kubota. 2012. Tomato seedling growth and morphological responses to supplemental led lighting red:blue ratios under varied daily solar light integrals. ISHS Acta. Hortic. 956. Hosni. K., K. Msaada, M. B. Taarit, and B. Marzouk. 2013. Fatty acid composition and tocopherol content in four Tunisian Hypericum species: Hypericum perforatum, Hypericum tomentosum, Hypericum perfoliatum and Hypericum ericoides Ssp. Roberti. Arab. J. of Chem. 10: 1878-2352. Haroon, K., and A. Rauf. 2014. Medicinal plants: economic perspective and recent developments. World Appl. Sci. 31: 1925-1929. Javid, E. P., M. R. Shakiba, M. Toorchi, A. D. Mohammadinasab. 2013. The influence of light intensities and nitrogen on growth of Hypericum perforatum L. Int. J. Agri. 4:775-781. Kong, S. S., H. N. Murthy, J. W. Heo, E. J. Hahn, and K. Y. Paek. 2008. The effect of light quality on the growth and development of in cultured Doritaenopsis plants. Acta Physiol. Plantarum 339-343. Leonid, V. K., L. J. Walton, D. M. Reid. 2007. Interaction of red to far red light ratio and ethylene in regulating stem elongation of Helianthus annuus. Plant Growth Regul 51:53-61. Li, J. Gang, L., Haiyang, W., and Xing, Wang, D. 2011. Phytochrome Signaling Mechanisms. Arabidopsis Book:9 e0148. Liu, J. Jun, Y. Yanjuan, P. Lu, L. 2012. The Progress of Chinese Traditional Medicine Hypericum perforatum L. for the Treatment of Depression. Int. J Psychiatry and Neurology 22-26. Lin ,Y., J. Li, B. Li, T. He, and Z, Chen. 2011. Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell Tissue Organ Cult. 105: 329–335. Odabas, M. S., J. Radusiene, N. Camas, V. Janulis, L. Ivanauskas, and C.cirak. 2009, The quantitative effects of temperature and light intensity on hyperforin and hypericns accumulation in Hypericum perforatum L. J. Med. Plants Res. 3: 519-525. Perez-Garcia, F., M. Huertas, E. Mora, B. pena, F. Varela, and M. E. Gonzalez-Benito. 2006. Hypericum perforatum L. seed germination: interpopulation variation and effect of light, temperature, presowing treatments and seed desiccation. Genet. Resour. Crop Evol. 53: 1187-1198. Richard, M. A. 2003. Regulation of Flowering Time by Histone Acetylation in Arabidopsis. Science 5:1695-1696. Saebo, A., T. Krekling, and M. Appelgren. 1995. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell 41: 177-185. Crockett, S. L. and N. K. B. Robson. 2011. Taxonomy and Chemotaxonomy of the Genus Hypericum. Med Aromat Plant Sci Biotechnol: 1-13. Siegfried, K. F. Caraci. B. Forti. F. Drago. 2010. Efficacy and tolerability of Hypericum extract for the treatment of mild to moderate depression. Eur. Neuropsychopharmacol:747-765. Szasz, K. and E. S. Barsi. 1971. Stimulatory effect of red light on the polysaccharide accumulation in the leaves. Photosynthetica 5: 71-73. Taiz, L. and E. Zeiger. 2006. Plant Physiology In: Photosynthesis Physiology and ecological considerations. pp. 220. Sinuer Associate. U. S. A. Tetsuro, N. Sayed, M. A. Zobayed, Toyoki, K. and Eiji, G. 2007. Medicinally Important Secondary Metabolities and Growth of Hypericum perforatum L. Plants as Affected by Light Quality and Intensity. Environ. Control Biol.,45:113-120. Tocci, N., Felicia, D. D., Giovanna, S., Simona, P., Anna, T. P., and Gabriella, P. 2012. A three-step culture system to increase the xanthone production and antifungal activity of Hypericum perforatum subsp. angustifolium in vitro roots. Plant Physio. Biochem. 54-58. Vandenbussche, F., R. Pierik, F. F. Millenaar, L. ACJ. Voesenek, and D. V. D. Straeten. 2005. Reaching out of shade. Curr Opin Plant Biol 462-468. Wang, J., J. Qian, Yao, and Y. Lu. 2015. Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bires and Bioproces 2: 1-9. Williams, V. L., E. T. F. Witkowski, and K. Balkwill. 2005. Application of diversity indices to appraise plant availability in the traditional medicinal markets of Johannesburg, South Africa. Biodivers. Conserv. 14: 2971-3001. Whitelam, G. C. 2007. Light and Plant Development. pp.15-107. Yanagi T., K. Okamoto, and S. Takita. 1996. Effects of blue and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants. Acta Hortic. 440: 117-122. Zhao, S. Z., H. Z. Sun, M. Chen, and B. S. Wang. 2010. Light-regulated betacyanin accumulation in euhalophyte Suaeda salsa calli. Plant Cell Tissue Organ Cult. 102: 99–107.
摘要: 貫葉連翹(Hypericum perforatum)是歐美國家廣泛使用之藥用植物,貫葉連翹原生於溫帶歐洲地區,引進亞熱帶地區栽培未能正常開花結實,因此在臺灣要發展貫葉連翹生產栽培,需建立有效誘導貫葉連翹開花及生產種子的方法。本試驗以不同光質與光期處理貫葉連翹,調查最有效誘導開花的處理方式,試驗光質包含藍、綠、紅混合LED、紅光LED、遠紅光LED、白日光等不同光質,進行延長光期17小時及暗期光中斷1至3小時等不同光質組合之光期處理,調查貫葉連翹營養生長及生殖生長期的發育特性變化,包括植株高度、莖節數、莖節長、直立莖數目、莖寬、分枝數、花蕾形成率、開花率、每莢種子數、種子百粒重、種子發芽率、莖和葉中可溶性醣類、澱粉、氮含量及碳氮比的變化。根據植株生長發育特徵、形態構造變化以及碳水化合物和含氮量的變化結果顯示,利用人工光源進行光期延長或暗期光中斷皆能有效促進貫葉連翹開花及正常產生種子。延長光期17小時處理,導致營養生長期植株高度增加、節間數多、節間較長、直立莖數較多、莖和葉中澱粉、氮含量增加但碳氮比降低;促進生殖生長期花蕾形成、開花提早、開花數及結莢數提升,其中以藍、綠、紅混合LED延長光期對貫葉連翹開花誘導及種子產生的促進效果最佳。利用不同光源進行暗期光中斷的試驗顯示,不同光質暗期光中斷對貫葉連翹營養生長及生殖生長期的處理效果如同延長光期處理,暗期光中斷亦能有效促進貫葉連翹開花及種子產生,其中紅光LED暗期光中斷1小時是促進貫葉連翹開花及種子產生最有效且節能的處理方法。
St John's Wort (Hypericum perforatum) is a medicinal herb commonly used in western countries. Indigenous to temperate Europe, St John's Wort can't enter reproductive phase and produce normal seed when introduced into subtropical areas for cultivation. Thus, developing an effective method to induce flowering and to assure seed production is required if St John's Wort is expected to grow and extent successfully in Taiwan. In this experiment, the effects of light quality and photoperiod on flowering response of St John's Wort plant were investigated. Plants were grown under a number of different light conditions, including day-length extension to 17 h with fluorescent white light, blue-green-red-mixed LEDs, red LEDs, and night-break for 1 to 3 h with fluorescent white light, blue-green-red-mixed LEDs, red LEDs, far-red LEDs, and red LEDs, far-red LEDs combination. Growth parameters, plant height, node number and length, number of erect stems, stem width, branch number, formation of floral bud, flowering rate, seed per capsule, 100-seeds weight, germination rate, total soluble sugar, starch, nitrogen content and C/N ratio in stems and leaves were measured during vegetative and reproductive stages. The results of growth characters, morphological changes, carbohydrates and nitrogen variation indicate that both day-length extension and night interruption by using artificial light are effective for flowering induction and seeds production. The plants receiving 17 h day-length treatment results in increasing plant height with more node and longer internode length, erect shoot, elevating starch and nitrogen content in leaves and stems but decreasing carbon and nitrogen ratio during vegetative stage. Times of floral bud initiation and flowering are earlier than control, and produce more flower, branch, and capsules during vegetative stage. Light source of blue-green-red-mixed LEDs is more effective than the other day-length treatment for flowering induction and seeds setting. Night interruption by using different artificial light produce the same results in growth characters, morphological changes, carbohydrates and nitrogen variation in leaves and stems as day-length extension and is also effective for flowering induction and seeds production. Night interruption for 1 h with red LEDs is the most efficiency, energy-saving treatment for St John's Wort flowering induction and seed production.
URI: http://hdl.handle.net/11455/89538
其他識別: U0005-1208201509404200
文章公開時間: 2018-08-19
Appears in Collections:農藝學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.