Please use this identifier to cite or link to this item:
標題: Study on Potted Irrigation System Under Artificial Light
作者: Zhe-Wei Liu
關鍵字: 密閉式環境
closed environments
culture media
drip irrigation systems
引用: 1.王俊傑。2010。作物栽培精準滴灌控制系統之應用。台中市:國立中興大學生物產業機電工程學系。 2.陳清田。2004。缺水期之灌溉用水有效調配模式。台北:國立台灣大學生物環境系統工程學研究所。 3.余竹樺。2007。利用MODIS影像反演嘉義地區水稻田蒸發散量之研究。桃園市:國立中央大學太空科學研究所。 4.張森彬。2011。密閉式環控栽培系統之研究。台中:國立中興大學生物產業機電工程學研究所。 5.禾康肥料有限公司。2013。葉面施肥要領。台中市。網址:。上網日期:2013-8-20。 6.安寶貞等。1991。台灣土傳性疫病之防治與抑病土壤。植物保護學會會刊33:142~147。 7.艾群。2010。農業生產節水技術與系統研發。台中市:農業試驗所。 8.何逸?。2006。農田水利專輯。豐年第56卷第10期:43-46。 9.吳添喜。2010。CCFL 燈管(G13) 產品規格書。台北:視積通科技有限公司。 10.林瑞松。2000。設施栽培環境與作物生理。設施栽培自動化專輯:41-50。 11.洪瑞廷、林正錺。1999。自製小型蒸發盆作為作物蒸發散評估之研究。土壤與環境第2卷4期: 371-382。 12.盛中德。2002。設施生產自動化技術 第九章灌溉與施肥之自動化。國立台灣大學農業機械工程學系出版。網址:。上網日期:2013-07-21。 13.陳令錫。2010。淺談作物生長環境之蒸發散。台中區農業改良場一O一年專題討論專集:109-114。 14.馮丁樹。1998。養液栽培裝置。種苗生產自動化技術通訊第三期第98002號。種苗生產自動化技術服務團。 15.馮丁樹。2006。網室及養液栽培裝置。臺北市:國立臺灣大學生物產業機電工程學系。 16.黃振昌、宋易倫。2004。不同計量期距的 Penman-Monteith 方程式日射-日照關係地域性參數之探討。農業工程學報;50(4), 77-92。 17.Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300, 6541. 18.Allen, R. G.,Smith, M., Perrier, A., and Pereira, L. S., 1994. An update for the definition of reference evapotranspiration. ICID Bulletin. Vol. 43, No. 2, p.1~ 34. 19.Chen, C. 2003. Prediction of lingitudinal variations in temperature and relative humidity for evaporative cooling greengouses. Agricultural Engineering Journal, 12(3&4), 143-164. 20.Doorenbos, J. and Kassam, A. H., 1979. Yield Response to water. FAO Irrigation and Drainage Paper NO 33, FAO, Rome. 21.Doorenbos, J. and Pruitt, W. O., 1977. Crop Water Requirements. FAO Irrigation and Drainage Paper NO 24, FAO, Rome. 22.Gates, D. M. 1964. Leaf temperature and transpiration. Agronomy Journal, 56:273-277. 23.Hansen, V.E., W.I. Orson, and E.S. Glen. 1979. Irrigation principles and practices. New York, N.Y.:John Wiley & Sons. 24.ICID, Proposed calculation proceduress for ETO combination formula., ICID Bulletine Vol. 43 No. 2, p.39 ~ 82. 1994. 25.Idso, S. B. 1982. Non-water-stressed baselines: A key to measuring and interpreting plant water stress. Agricultural Meteorology, 27: 59-70. 26.Jackson R.D., S.B. Idso, R.J. Reginato and P.J. Pinter. 1981. Canopy temperature as a crop water stress indicator. Water Resources Research, 17(4): 1133-1138. 27.Jensen, M. E. 1973. Consumptive use of water and irrigation water requirements. 28.Jolliet, O. 1994. HORTITRANS, A model for predicting and optimizing humidity and transpiration in greenhouses. Journal of Agricultural Engineering Research, 57(1), 23-37. 29.Kacira, M., P. P. Ling, and T. H. Short. 2002a. Machine vision extracted plant movement for early detection of plant water stress. Transactions of the ASAE 45(4): 1147-1153. 30. Kacira, M., P. P. Ling, and T. H. Short. 2002b. Establishing crop water stress index (CWSI) threshold values for early and non-contact detection of plant water stress. Transactions of the ASAE 45(3): 775–780. 31.Kotsopoulos, S. and Babajimopoulos C., 1997. Analytical estimation of modified Penman equation parameters . J. Irrig. And Drain Engng.;ASCE 123(4):253 – 256. 32.Monteith, J. L. 1965. Evaporation and environment. In Symp. Soc. Exp. Biol(Vol. 19, No. 205-23, p. 4). 33.Prenger, J.J., R.P. Fynn, and R.C. Hansen. 2001. An evaluation of four evapotranspiration models in a greenhouse environment. Transactions of the ASAE 45(6):1779-1788. 34.Seginer, I., R. T. Elster, J. W. Goodrum, and M. W. Rieger. 1992. Plant wilt detection by computer-vision tracking of leaf tips. Transactions od the ASAE, 35(5):1563-1567. 35.Short, T. H., Irvem, A., & Hansen, R. C. 1999. Transpiration of container-grown Acer rubrum under conditions of high evaporative demand. Applied engineering in agriculture. 36.Sammis, T. 2007. Crop Water Stress Index. 網址:。上網日期:2014-06-19。 37.Walter, I. A., Allen, R. G., Elliott, R., Jensen, M. E., Itenfisu, D., Mecham, B., ... & Martin, D. 2000, November. ASCE's standardized reference evapotranspiration equation. In Proc. of the Watershed Management 2000 Conference, June.
摘要: 本研究旨探討在密閉環境下利用介質耕栽培技術設計滴灌灌溉系統,針對實驗作物生理狀況、需水量等,以最快速、最有效益的方式達成不循環回收灌溉。 實驗結果顯示,使用土壤為介質在相同環境條件時,定時定量灌溉方式較為耗水且作物鮮重最輕,而利用HORTITRANS模式之灌溉方式其節水約7.41%(231毫升)且平均乾重較定時定量灌溉方式重1.64克。HORTITRANS溫濕度即時校正模式較定時定量灌溉之灌溉用水增加約3.45%(108毫升)灌溉水,平均作物乾重較重1.68克,此實驗方式能獲得最大平均作物鮮重40.08克。 本研究有效利用HORTITRANS和滴灌灌溉系統來栽培作物,實驗結果之分析均可作為日後滴灌作業或無土栽培之參考。
This research investigated that under confined space, how to design drip irrigation system by using the cultivation technology of cultivation media. In order to achieve non-recycling irrigation in a fast and cost-effective way, physical condition and water demand of the experimented crops should be taken into account. The result shows that, using soil as media under the same environmental condition, the fresh weight of crop would be the lightest and consuming more water by fixed time and rationed irrigation. However, by HORTITRANS, it could not only save water for 7.41% (231 ml), but also make the averaging dry weight 1.64g heavier than the fixed time and rationed irrigation. Furthermore, if by HORTITRANS under fixing the environmental temperature and humidity timely, it would consume 3.45% (108 ml) irrigation water than fixed time and rationed irrigation, but the crop dry weight could be not only 1.68g heavier than the average of using HORTITRANS, but also up to 40.08g in averaging fresh weight, which is also the heaviest of all. This research experiments on crop cultivation by using HORTITRANS and drip irrigation system, as well as the analysis and experimental results could be referred to the future research of both drip irrigation and soilless cultivation.
其他識別: U0005-0607201515353300
文章公開時間: 2018-07-22
Appears in Collections:生物產業機電工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.