Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89991
標題: Application of Inertial Measurement Unit on Estimating Grain Storage
應用慣性量測單元於穀堆體積估算系統
作者: Po-Shao Chen
陳柏劭
關鍵字: 慣性量測單元
Quaternion
座標擬合
體積估測
Inertial measurement unit
Quaternion
Mapping
Estimated volume
引用: 1. 姜智勻。2007。3D雷射掃描在歷史建築數位保存模型之網路系統整合應用:以三峽祖師廟為例。碩士論文。台北:國立台灣科技大學建築研究 所。 2. 施志軒。2013。以SLAM機器人建立三維大尺度場景之演算法研究。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。 3. 徐嘉偉。2010。應用互補濾波器於慣性感測之運動與姿態角估算。碩士論文。台北:國立台北科技大學機電整合研究所。 4. 唐一翔。2011。非水平傾斜校正法與全景影像檢閱系統應用於穀堆儲量監測之研究。碩士論文。台中:國立中興大學生物產業機電工程學研究所。 5. 陳政宏。2009。公糧穀倉儲量估算與監測系統之設計與分析。碩士論文。台中:國立中興大學生物產業機電工程學研究所。 6. 陳名豊。2010。爬升機構之設計與升降速度控制系統之研究。碩士論文。 台中:國立中興大學生物產業機電工程學研究所。 7. 陳科廷。2010。雙軸式水平調整機構之研究及其在穀堆儲量量測之應用。碩士論文。台中:國立中興大學生物產業機電工程學研究所。 8. 陳政宏、林聖泉、陳科廷、陳名豊。2011。穀倉穀堆儲量估算與監測系統之開發。農林學報 60(1):79-91。 9. 黃俊凱。2005。微機電感測器於地面車輛定位系統之應用。碩士論文。台北:國立台灣科技大學機械工程系研究所。 10. 曾憲宗、林聖泉、鄒朝富、呂世豪。2012。大型儲料桶體積量測方法之研究。農林學報 61(4):399-410。 11. 曾憲宗。2012。大型儲料桶體積量測方法之研究。碩士論文。台中:國立中興大學生物產業機電工程學研究所。 12. 鄒朝富。2014。運用座標系統擬合於穀堆體積估算之研究。碩士論文。台中:國立中興大學生物產業機電工程學研究所。 13. Cooke, J. M. 1992. NPSNET: Flight simulation dynamic modeling using quaternions. PhD Thesis. Monterey, California. Naval Postgraduate School. 14. Corrales, J. A., F. A. Candelas & F. Torres 2008. Hybrid tracking of human operators using IMU/UWB data fusion by a Kalman filter. In Human-Robot Interaction (HRI), 2008 3rd ACM/IEEE International Conference on (pp. 193-200). 15. Foxlin, E. 1996. Inertial head-tracker sensor fusion by a complementary separate-bias Kalman filter. In Virtual Reality Annual International Symposium,Proceedings of the IEEE (pp. 185-194). 16. Hamilton, W. R., & W. E. Hamilton. 1866. Elements of quaternions. London:Longmans, Green, & Company. 17. Kuipers, J. B. 1999. Quaternions and rotation sequences (Vol. 66). Princeton:Princeton university press. 18. Lewis, D. W. 2006. Quaternion algebras and the algebraic legacy of Hamilton's quaternions. Irish Math. Soc. Bull, 57, 41-64. 19. Leica Geosystems. 2007. Leica DISTO™ A6 User Manual. Available at: http://ptd.leica-geosystems.com/downloads123/cp/disto/a6/manuals/UserM- A6_web_cn.pdf. (Accessed on 28 October, 2013.) 20. Lee, H. J., & S. Jung. 2009. Gyro sensor drift compensation by Kalman filter to control a mobile inverted pendulum robot system. In Industrial Technology,IEEE International Conference on (pp.1-6). 21. Luinge, H. J., & P. H. Veltink. 2005. Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Medical and Biological Engineering and computing, 43(2): 273-282. 22. Madgwick, S. O. H. 2010. An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Report x-io and University of Bristol (UK). 23. Madgwick, S. O. H. , A. J. Harrison, & R. Vaidyanathan. 2011. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Rehabilitation Robotics (ICORR), IEEE International Conference on (pp. 1-7). 24. Nagasaka, Y., N. Umeda, Y. Kanetai, K. Taniwaki, & Y. Sasaki. 2004.Autonomous guidance for rice transplanting using global positioning and gyroscopes. Computers and Electronics in Agriculture 43(3):223-234. 25. Pekka T. Laakso, 2003. Elements of the Quaternion Algebra with an Application to Electrical Technology and Rotations in 3D. 26. Pfeifer, N., B. Gorte, & D. Winterhalder. 2004. Automatic reconstruction of single trees from terrestrial laser scanner data. In Proceedings of 20th ISPRS Congress (pp. 114-119). 27. Roetenberg, D., P. J. Slycke, & P. H. Veltink. 2007. Ambulatory position and orientation tracking fusing magnetic and inertial sensing. Biomedical Engineering,IEEE Transactions 54(5): 883-890. 28. Rosell, J. R., J. Llorens, R. Sanz, J. Arnó, M. Ribes-Dasi, J. Masip, A. Escolà, F. Camp, F. Solanelles, F. Gracià, E. Gil, L. Val, S. Santiago Planas, J. Palacín. 2009. Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agricultural and Forest Meteorology, 149(9): 1505-1515. 29. Surmann, H., K. Lingemann, A. Nüchter, & J. Hertzberg. 2001. A 3D laser range finder for autonomous mobile robots. In Proceedings of the 32nd ISR(International Symposium on Robotics) 19(21):153-158. 30. Surmann, H., A. Nüchter, & J. Hertzberg. 2003. An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments. Robotics and Autonomous Systems 45(3):181-198. 31. Wulf, O., & B. Wagner. 2003. Fast 3D scanning methods for laser measurement systems. In International conference on control systems and computer science(CSCS14):2-5. 32. X-IO Technologies. 2013. x-IMU-User-Manual. Available at: http://www.x-io.co.uk/downloads/x-IMU-User-Manual-v5.2.pdf. (Accessed on October, 2013.)
摘要: 本系統以雷射測距儀為量測主體,整合慣性量測單元、相機三腳架、 Arduino 控制器,延續前人的研究,建立一套具可攜式特性之穀堆體積估測系統。在操作上,相機三腳架的輔助,提供雷射測距儀量測時的穩定平台,再由慣性量測單元量測出之雷射測距儀在三維空間中的姿態資訊,結合雷射測距儀對於量測點所量測出的距離,透過空間中向量與座標軸間的三角函數關係,推算量測點在所定義的區域座標系統下的三維空間座標。並設計一套適用於此系統之量測方式,此方式將穀堆表面資料點分成兩個工作視角進行量測,此兩工作視角皆能同時觀察長方體穀堆兩面,透過不同視角的量測,即可取得穀堆整體表面資料點資訊,而後利用 Quaternion 座標旋轉、座標平移,將兩次量測動作所擷取的資料進行擬合(Mapping),完成整體穀堆外形之模型,再將各特徵點以三角網格化方式,建立各特徵點間三角數學關係,代入四面體體積公式,即可完成穀堆體積之估算。 根據結果顯示,本研究所設計的穀堆體積估測系統,在準確度上,平均誤差在 2.15 %以內,硬體方面,相較於前人的研究,攜帶性以及維修性上具有大幅的提升,稽查動作的操作性上,也更加彈性及靈活。
This paper described the design of a portable measuring system for estimating grain volume. The system consists of an inertial measurement unit (IMU), a laser range finder, a compact tripod, and Button module. Inertial measurement unit consisting of tri-axis gyroscopes and accelerometer was assembled in a rectangular box that can measure the orientation in local coordinate system through mathematical integration. Laser range finder mounted on compact tripod can measure the distance information to the object point in grain piles. According to the distance obtained by the laser range finder and its orientation measured by IMU, the coordinate information of the object point in the local coordinate system can be calculated. In order to get more surface information on grain piles, two different perspectives were used. The same object points on the bottom of grain piles were used in a serial of mapping steps including quaternion rotating and coordinate shifting. Then, two sets of the object points can be mapped into the same coordinate system. Therefore, a 3D model of the grain piles can be constructed, and the volume can be estimated. Results indicated that the error rate of this system was less than 2.15%.
URI: http://hdl.handle.net/11455/89991
其他識別: U0005-0506201509154000
文章公開時間: 2015-07-16
Appears in Collections:生物產業機電工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.