Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90006
標題: Design of a Tube-Climbing Robot
爬管機器人之研製
作者: Cheng-Yueh Chung
鍾政岳
關鍵字: 爬管機器人
PID
馬達定位
萬向輪
Tube-climbing
PID
Motor position control
Omni wheel
引用: 1. 白朝順。2010。電動輔助自行車控制器之設計與製作。台中:逢甲大學電機工程學系研究所。 2. 張碩、詹森。2010。自動控制系統。鼎茂圖書公司。 3. 陳陞祐。2010。使用主從為控制器之全向輪機器人實現。碩士論文。台中:國立中興大學機械工程學系研究所。 4. 潘建豪。2004。類圓柱體爬昇機之設計與開發。碩士論文。台北:國立臺灣大學生物產業機電工程學系研究所。 5. Ahmadabadi, M. N., H. Moradi, A. Sadeghi, A. Madani, M. Farahnak. 2010. The evolution of UT pole climbing robots. In Applied Robotics for the Power Industry (CARPI), 2010 1st International Conference: 1-6. 6. Almonacid, M., R.J. Saltar?n, R. Aracil, O. Reinoso. 2003. Motion planning of a climbing parallel robot. Robotics and Automation, IEEE Transactions 19(3): 485-489. 7. Aracil, R., M. Almonacid, R. Saltaren, J.M. Sabater, J.M. Azor?n. 2000. Kinematic control for navigation of mobile parallel robots applied to large structures. In Proceedings of the 17th IAARC/CIB/IEEE/IFR International Symposium on Automation and Robotics in Construction: 551-557. 8. Aracil, R., R. Saltaren, O. Reinoso. 2003. Parallel robots for autonomous climbing along tubular structures. Robotics and Autonomous Systems 42(2): 125–134. 9. Asama, H., M. Sato, L. Bogoni, H. Kaetsu, A. Mitsumoto, I. Endo. 1995. Development of an omni-directional mobile robot with 3 DOF decoupling drive mechanism. In Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference Vol. 2: 1925-1930. 10. Carlo, M., S. Metin. 2006. A biomimetic climbing robot based on the gecko. Journal of Bionic Engineering 3(3): 115-125. 11. Haynes, G.C., A. Khripin, G. Lynch, J. Amory, A. Saunders, A. A. Rizzi, D. E. Koditschek. 2009. Rapid pole climbing with a quadrupedal robot. In Robotics and Automation, 2009. ICRA'09. IEEE International Conference: 2767-2772. 12. Leow, Y.P., K.H. Low, W.K. Loh. 2002. Kinematic modelling and analysis of mobile robots with omni-directional wheels. In Control, Automation, Robotics and Vision, 2002. ICARCV 2002. 7th International Conference Vol. 2: 820-825. 13. Pinckney, N., 2006. Pulse-width modulation for microcontroller servo control. Potentials. IEEE 25(1): 27-29. 14. Ripin, Z.M., T.B. Soon, A.B. Abdullah, Z. Samad. 2000. Development of a low-cost modular pole climbing robot. In TENCON 2000. Proceedings: 196-200. 15. Sadeghi, M., A. Moradi. 2008. Design and fabrication of a column-climber robot (Koala robot). Industrial and Aerospace Engineering2: 220-225. 16. Shin, H. W., H. Kim, S. C. Moon, S. G. Lee. 2013. Pose tracking control of an omni-directional wheel-type robot for a heavy-water nuclear reactor. In Control, Automation and Systems (ICCAS), 2013 13th International Conference: 651-656. 17. Shokripour, H., W.I.W. Ismail, Z.M. Karimi. 2010. Development of an automatic self balancing control system for a tree climbing robot. African Journal of Agricultural Research 5(21): 2964-2971. 18. Shokripour, H., W.I.W. Ismail, R. Sokripour and Z.M. Karimi. 2012. Development of an automatic cutting system for harvesting oil palm fresh fruit bunch (FFB). African Journal of Agricultural Research 7(17):2683-2688. 19. Tavakoli, M., A. Marjovi, L. Marques, A.T. de Almeida.2008. 3DCLIMBER: A climbing robot for inspection of 3D human made structures. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference: 4130-4135. 20. Wu, C.W., C.K. Hwang. 2008. A novel spherical wheel driven by Omni wheels. In Machine Learning and Cybernetics, 2008 International Conference Vol. 7: 3800-3803.
摘要: 本研究完成開發新式爬管機器人,以鋁擠型結構樑、拉伸彈簧、齒輪等機械組件建構機器人機構,並結合KNR控制器、個人電腦、直流馬達、萬向輪等設備,軟體部分則運用LabVIEW圖控軟體撰寫測試與控制程式。本研究主要著重於馬達控制系統與機器人機構設計,首先以PWM與PID方法控制馬達定位,其後以力學方法討論機器人機構設計,並提出機構調整方針。機器人測試實驗分為室內測試與戶外測試,室內測試以直徑26 cm之水管為待爬物,於水管表面黏貼軟木皮,模仿戶外樹幹,測試機器人爬升、靜置、下降等功能;戶外部分,以大王椰子樹幹為待爬物,實驗流程與室內實驗相同。實驗結果顯示,機器人可順利完成所有測試動作,可爬升至離地面3 m高處。
This study developed a new-type of tube-climbing robot. The tube-climbing robot combines a KNR, a personal computer, DC motors, Omni wheels, aluminum frame, extension strings, spur gears, and some machine components. In the communication system part, all devices can be connected through a LabVIEW program. Designing the robot control system and the mechanism were emphasized in this paper. A PWM and a PID controller were applied in motor position control. Furthermore, the mechanics of robot mechanism was analyzed. Accordingly, the strategies for adjustment of robot structure was proposed. The experiments were carried out indoors as well outdoors. In indoor tests, a PVC tube (26 cm of diameter) wrapped around with a layer of cork was used. Three basic motions of robot - climbing up, climbing down, and staying on a tube - were investigated. In outdoor tests, to the robot was guided to climb along the royal palm trunk. Similarly, three motions were investigated. The results showed that tube-climbing robot could accomplish all testing motions and it was also able to climb up to 3 meters high from the ground.
URI: http://hdl.handle.net/11455/90006
其他識別: U0005-2811201416184127
文章公開時間: 2015-08-31
Appears in Collections:生物產業機電工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.