Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90054
標題: Anti-Influenza A virus activities of strictinin and ellagic acid extracted from Pu-erh tea
普洱茶中 Strictinin 與鞣花酸在抗 A 型流感病毒能力之分析
作者: 林榆倫
Yu-Lun Lin
關鍵字: 
no
引用: 1.疾病管制署 (2014) 台灣流感速訊 2014 年的第九週 台北市 疾病管制署。 2.疾病管制署 (2012):季節性流感防治工作手冊。台北市:疾病管制署。 3.Wang, X., Jia, W., Zhao, A., & Wang, X. (2006). Anti-influenza agents from plants and traditional chinese medicine. Phytotherapy Research, 20(5), 335-341. 4.Wu, C. D., & Wei, G. X. (2002). Tea as a functional food for oral health. Nutrition, 18(5), 443– 444. 5.Dou, J., Lee, S. Y., Tzen T. C., & Lee, M. R. (2007). Identification and comparison of phenolic compounds in the preparation of oolong tea manufactured by semifermentation and drying processes. Journal of Agricultural and Food Chemistry, 55(18), 7462-7468. 6.Lv, H. P., Zhang, Y. J., Lin, Z., & Lian, Y. R. (2013). Processing and chemical constituents of Pu-erh tea: A review. Food Research International, 53(2), 608-618. 7.Song, J. M., Lee, K. H., & Seong, B. L. (2005). Antiviral effect of catechins in green tea on influenza virus. Antiviral Research, 68(2), 66-74. 8.Saha, R. K., Takahashi, T., Kurebayashi, Y., Fukushima, K., Minami, A., Kinbara, N., Ichitani, M., ... Suzuki, T. (2010). Antiviral effect of strictinin on influenza virus replication. Antiviral Research, 88(1), 10-18. 9.Gaush, C. R., & Smith, T. F. (1968). Replication and plaque assay of influenza virus in an established line of canine kidney cells. Journal of Applied Microbiology, 16(4), 588-594. 10. Shors, T. (2008). Understanding viruses (1st ed.). United States: Jones and Bartlett. 11. Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M., & Kawaoka, Y. (1992). Evolution and ecology of influenza A viruses. Microbilogical Reviews, 56(1), 152-179. 12. Nobusawa, E., & Sato, K. (2006). Comparison of the mutation rates of human influenza A and B viruses. Virology, 80(7), 3675–3678. 13. WHO. (2011). Global monitoring of antiviral resistance in currently circulating human influenza viruses, November 2011. Weekly epidemiological record, 86, p. 497–508. 14. Neumann, G., Noda, T., & Kawaoka, Y. (2009). Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 459(18), 931-939. 15. Zoidis, G., Fytas, C., Papanastasiou, I., Foscolos, G. B., Fytas, G., Padalko, E., Clercq, E. D., ... Kolocouris, N. (2006). Heterocyclic rimantadine analogues with antiviral activity. Bioorganic and Medicinal Chemistry, 14(10), 3341–3348. 16. Sang, S., Lambert, J. D., Ho, C., & Yang, C. S. (2011). The chemistry and biotransformation of tea constituents. Pharmacological Research, 64(2), 87-99. 17. 陳宗懋、俞永明、梁國彪、周智修 (2011):品茶圖鑑。台北市:笛藤。 18. Abe, M., Takaoka, N., Idemoto, Y., Takagi, C., Imai, T., & Nakasaki, K. (2008). Characteristic fungi observed in the fermentation process for Puer tea. International Journal of Food Microbiology, 124(2), 199-203. 19. Harbowy, M. E., & Balentine, D. A. (1997). Tea chemistry. Plant Sciences, 16(5), 415-480. 20. Wang, Q., Peng, C., & Gong, J. (2011). Effects of enzymatic action on the formation of theabrownin during solid state fermentation of Pu-erh tea. Science of Food and Agriculture, 91(13), 2412-2418. 21. Ascacio-Valdés, J. A., Buenrostro-Figueroa, J. J., Aguilera-Carbo, A., Prado-Barragán, A., Rodríguez-Herrera, R., & Aguilar, C. N. (2011). Ellagitannins: Biosynthesis, biodegradation and biological properties. Journal of Medicinal Plants Research, 5(19), 4696-4703. 22. Nonaka, G. I., Sakai, R., & Nishioka, I. (1984). Hydrolysable tannins andproanthocyanidins from green tea. Phytochemistry, 23(8), 1753–1755. 23. Mizukami, Y., Sawai, Y., & Yamaguchi, Y. (2007). Simultaneous analysis of catechins, gallicacid,, and purine alkaloids in green tea by using catechol as an internal standard. Journal of Agricultural and Food Chemistry, 55(13), 4957-4964. 24. Tripathi, S., Batra, J., Cao, W., Sharma, K., Patel, J. R., Ranjan, P., ... Lal, S. K. (2013). Influenza A virus nucleoprotein induces apoptosis in human airway epithelial cells: implications of a novel interaction between nucleoprotein and host protein Clusterin. Cell Death and Disease, 4, e562 25. Chen, G. H., Lin, Y. L., Hsu, W. L., Lee, M. S., & Tzen, T. C. (2014). Significant elevation of antiviral activity of strictinin, the major phenolic compound in Pu'er teas of wild trees, after thermal degradation to ellagic acid and gallic acid. Journal of Food and Drug Analysis. (impress) 26. Niino, H., Sakane, I., Okanoya, K., Kuribayashi, S., & Kinugasa, H. (2005). Determination of mechanism of flock sediment formation in tea beverages. Journal of Agricultural and Food Chemistry, 53(10), 3995-3999. 27. Tuominen, A., & Sundman, T. (2013). Stability and oxidation products of hydrolysable tannins in basic conditions detected by HPLC/DAD–ESI/QTOF/MS. Phytochemical Analysis, 24(5), 424-435. 28. Li, J. H., Nesumi, A., Shimizu, K., Sakata, Y., Liang, M. Z., He, Q. Y., Zhou, H. J., & Hashimoto, F. (2010). Chemosystematics of tea trees based on tea leaf polyphenols as phenetic markers. Phytochemistry, 71(11-12), 1342-1349. 29. Ku, K. M., Choi, J. N., Kim, J., Kim, J. K., Yoo, L. G., Lee, S. J., Hong, Y. S., & Lee, C. H. (2010). Metabolomics Analysis Reveals the Compositional Differences of Shade Grown Tea (Camellia sinensis L.). Journal of Agricultural and Food Chemistry, 58(1), 418-426. 30. Lee, S. Y, Dou, J., Ronald J. Y. Chen, Lin, R. S., Lee, M. R., & Tzen, J. T. (2008). Massive accumulation of gallic acid and unique occurrence of myricetin, quercetin, and kaempferol in preparing old oolong tea. Journal of Agricultural and Food Chemistry, 56(17), 7950–7956. 31. Ku, K. M., Kim, J., Park, H. J., Liu, K. H., & Lee, C. H. (2010). Application of metabolomics in the analysis of manufacturing type of pu-erh tea and composition changes with different postfermentation year. Journal of Agricultural and Food Chemistry, 58(1), 345-352. 32. Bhat, T. K., Singh, B., & Sharma, O. P. (1998). Microbial degradation of tannins – A current perspective. Biodegradation, 9(5), 343-357. 33. Aguilera-Carbo, A., Augur, C., Prado-Barragan, L. A., Favela-Torres, E., & Aguilar, C. N. (2008). Microbial production of ellagic acid and biodegradation of ellagitannins. Applied Microbiology and Biotechnology, 78(2), 189-199. 34. Monobe, M., Ema, K., Kato, F., & Maeda-Yamamoto, M. (2008). Immunostimulating activity of a crude polysaccharide derived from green tea (Camellia sinensis) extract. Journal of Agricultural and Food Chemistry, 56(4), 1423-1427. 35. Tachibana, H., Kubo, T., Miyase, T., Tanino, S., Yoshimoto, M., Sano, M., Yamamoto-Maeda, M., ... Yamada, K. (2001). Identification of an inhibitor for interleukin 4-induced epsilon germline transcription and antigen-specific IgE production in vivo. Biochemical and Biophysical Research Communications, 280(1), 53-60. 36. Zhou, B., Yang, L., & Liu, Z. L. (2004). Strictinin as an efficient antioxidant in lipid peroxidation. Chemistry and Physics of Lipids, 131(1), 15-25.
摘要: 茶,是世界上廣泛使用的健康飲品,根據製茶工藝的不同而衍生出來的茶葉種類繁多。第一部分的實驗針對綠茶、烏龍茶、紅茶、生普洱茶以及熟普洱茶進行茶湯成分分析,結果顯示生普洱茶中有一分子量為 634 g/mol 的化合物含量明顯高於其他茶葉樣品,根據 MS 以及 NMR 的光譜鑑定出該化合物為木麻黃素(strictinin)。前人研究證明在細胞實驗中木麻黃素可有效抑制流感病毒的複製,然而自然界中有許多因素都可能促進木麻黃素的裂解反應並產生鞣花酸 (ellagic acid)以及沒食子酸 (gallic acid),因此實驗的第二部分是選擇木麻黃素以及鞣花酸兩種待測物進行病毒斑塊抑制實驗 (Plaque reduction assay),實驗數據顯示木麻黃素在50 μM 的病毒抑制率只有 36 %,反觀熱裂解物鞣花酸在同樣濃度下病毒抑制率可達 90 %,鞣花酸在低濃度下就表現出比木麻黃素更好的抑制活性。本研究發現木麻黃素裂解的過程有提升流感病毒的抑制活性,期望能應用於製茶條件的調整來提升普洱茶的附加價值。
Tea is a popular beverage in the worldwide. It can be further classified into many varieties of tea products according to their preparatory processes. In the first part, the samples of Green tea, Oolong tea, Black tea, Raw and Ripe Pu-erh tea were analyzed and compared. A compound of molecular weight 634 g/mol was particularly found as a major constituent in Raw Pu-erh tea, and identified as strictinin by MS and NMR spectra. Although strictinin showed antiviral effect on influenza virus in vitro, strictinin can be degraded easily and decomposed into ellagic acid and gallic acid. Therefore, we take strictinin and ellagic acid as agents to perform plaque reduction assay in the second part. The result shows the inhibition of plaque forming ratio was 36 % and 90 % for strictinin and ellagic acid respectively both in 50 µM. It indicates that ellagic acid possesses a stronger anti-influenza activity than strictinin in the low concentration. The result suggests that a degradation process of strictinin could enhance anti-influenza activity. This study may provide useful information in tea manufacture to make Pu-erh tea more valuable.
URI: http://hdl.handle.net/11455/90054
文章公開時間: 2015-07-15
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.