Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90084
標題: Ionocyte differentiation and Na+ homeostasis of zebrafish (Danio rerio) under acidic environment
酸性環境下斑馬魚的離子細胞分化及鈉離子恆定機制
作者: 張維仁
Wei-Jen Chang
關鍵字: 斑馬魚
鈉離子
離子細胞
zebrafish
ionocyte acid
acclimation
引用: References [1] E. Proksch, J.M. Brandner, and J.M. Jensen, The skin: an indispensable barrier. Exp Dermatol 17 (2008) 1063-72. [2] J.W. Hawkes, The structure of fish skin. I. General organization. Cell Tissue Res 149 (1974) 147-58. [3] D. Le Guellec, G. Morvan-Dubois, and J.Y. Sire, Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebrafish (Danio rerio). Int J Dev Biol 48 (2004) 217-31. [4] M.I. Concha, S. Molina, C. Oyarzun, J. Villanueva, and R. Amthauer, Local expression of apolipoprotein A-I gene and a possible role for HDL in primary defence in the carp skin. Fish Shellfish Immunol 14 (2003) 259-73. [5] L. Alonso, and E. Fuchs, Stem cells of the skin epithelium. Proc Natl Acad Sci U S A 100 Suppl 1 (2003) 11830-5. [6] R.C. Henrikson, and A.G. Matoltsy, The fine structure of teleost epidermis. 1. Introduction and filament-containing cells. J Ultrastruct Res 21 (1967) 194-212. [7] R.C. Henrikson, and A.G. Matoltsy, The fine structure of teleost epidermis. II. Mucous cells. J Ultrastruct Res 21 (1967) 213-21. [8] R.C. Henrikson, and A.G. Matoltsy, The fine structure of teleost epidermis. 3. Club cells and other cell types. J Ultrastruct Res 21 (1967) 222-32. [9] J.Y. Sire, and A. Huysseune, Formation of dermal skeletal and dental tissues in fish: a comparative and evolutionary approach. Biol Rev Camb Philos Soc 78 (2003) 219-49. [10] C.B. Kimmel, R.M. Warga, and T.F. Schilling, Origin and organization of the zebrafish fate map. Development 108 (1990) 581-94. [11] V. M'Boneko, and H.J. Merker, Development and morphology of the periderm of mouse embryos (days 9-12 of gestation). Acta Anat (Basel) 133 (1988) 325-36. [12] K. Slanchev, T.J. Carney, M.P. Stemmler, B. Koschorz, A. Amsterdam, H. Schwarz, and M. Hammerschmidt, The epithelial cell adhesion molecule EpCAM is required for epithelial morphogenesis and integrity during zebrafish epiboly and skin development. PLoS Genet 5 (2009) e1000563. [13] C.P. Heisenberg, and M. Tada, Zebrafish gastrulation movements: bridging cell and developmental biology. Semin Cell Dev Biol 13 (2002) 471-9. [14] E.M. Cherdantseva, and V.G. Cherdantsev, Geometry and mechanics of teleost gastrulation and the formation of primary embryonic axes. Int J Dev Biol 50 (2006) 157-68. [15] S.C. Little, and M.C. Mullins, Extracellular modulation of BMP activity in patterning the dorsoventral axis. Birth Defects Res C Embryo Today 78 (2006) 224-42. [16] C.G. Sagerstrom, L.S. Gammill, R. Veale, and H. Sive, Specification of the enveloping layer and lack of autoneuralization in zebrafish embryonic explants. Dev Dyn 232 (2005) 85-97. [17] J.L. Sabel, C. d'Alencon, E.K. O'Brien, E. Van Otterloo, K. Lutz, T.N. Cuykendall, B.C. Schutte, D.W. Houston, and R.A. Cornell, Maternal Interferon Regulatory Factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos. Dev Biol 325 (2009) 249-62. [18] M. Lachnit, E. Kur, and W. Driever, Alterations of the cytoskeleton in all three embryonic lineages contribute to the epiboly defect of Pou5f1/Oct4 deficient MZspg zebrafish embryos. Dev Biol 315 (2008) 1-17. [19] W. Pei, H. Noushmehr, J. Costa, M.V. Ouspenskaia, A.G. Elkahloun, and B. Feldman, An early requirement for maternal FoxH1 during zebrafish gastrulation. Dev Biol 310 (2007) 10-22. [20] C. Fukazawa, C. Santiago, K.M. Park, W.J. Deery, S. Gomez de la Torre Canny, C.K. Holterhoff, and D.S. Wagner, poky/chuk/ikk1 is required for differentiation of the zebrafish embryonic epidermis. Dev Biol 346 (2010) 272-83. [21] Y. Yamamoto, and M. Oelgeschlager, Regulation of bone morphogenetic proteins in early embryonic development. Naturwissenschaften 91 (2004) 519-34. [22] H.J. Kwon, N. Bhat, E.M. Sweet, R.A. Cornell, and B.B. Riley, Identification of early requirements for preplacodal ectoderm and sensory organ development. PLoS Genet 6 (2010). [23] H. Lee, and D. Kimelman, A dominant-negative form of p63 is required for epidermal proliferation in zebrafish. Dev Cell 2 (2002) 607-16. [24] D. Aberdam, K. Gambaro, P. Rostagno, E. Aberdam, S. de la Forest Divonne, and M. Rouleau, Key role of p63 in BMP-4-induced epidermal commitment of embryonic stem cells. Cell Cycle 6 (2007) 291-4. [25] J. Bakkers, M. Hild, C. Kramer, M. Furutani-Seiki, and M. Hammerschmidt, Zebrafish DeltaNp63 is a direct target of Bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Dev Cell 2 (2002) 617-27. [26] M. Esaki, K. Hoshijima, N. Nakamura, K. Munakata, M. Tanaka, K. Ookata, K. Asakawa, K. Kawakami, W. Wang, E.S. Weinberg, and S. Hirose, Mechanism of development of ionocytes rich in vacuolar-type H+-ATPase in the skin of zebrafish larvae. Dev Biol 329 (2009) 116-29. [27] M. Janicke, T.J. Carney, and M. Hammerschmidt, Foxi3 transcription factors and Notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo. Dev Biol 307 (2007) 258-71. [28] P.P. Hwang, T.H. Lee, and L.Y. Lin, Ion Regulation in Fish Gills: Recent Progress in the Cellular and Molecular Mechanisms. Am J Physiol Regul Integr Comp Physiol (2011). [29] C.D. Hsiao, M.S. You, Y.J. Guh, M. Ma, Y.J. Jiang, and P.P. Hwang, A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PLoS One 2 (2007) e302. [30] L. Abbas, S. Hajihashemi, L.F. Stead, G.J. Cooper, T.L. Ware, T.S. Munsey, T.T. Whitfield, and S.J. White, Functional and developmental expression of a zebrafish Kir1.1 (ROMK) potassium channel homologue Kcnj1. J Physiol 589 (2011) 1489-503. [31] L.Y. Lin, J.L. Horng, J.G. Kunkel, and P.P. Hwang, Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290 (2006) C371-8. [32] Y.F. Wang, Y.C. Tseng, J.J. Yan, J. Hiroi, and P.P. Hwang, Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 296 (2009) R1650-60. [33] W.J. Chang, J.L. Horng, J.J. Yan, C.D. Hsiao, and P.P. Hwang, The transcription factor, glial cell missing 2, is involved in differentiation and functional regulation of H+-ATPase-rich cells in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 296 (2009) R1192-201. [34] A.E. Webb, W. Driever, and D. Kimelman, psoriasis regulates epidermal development in zebrafish. Dev Dyn 237 (2008) 1153-64. [35] G. Shi, K.C. Sohn, T.Y. Choi, D.K. Choi, S.S. Lee, B.S. Ou, S. Kim, Y.H. Lee, T.J. Yoon, S.J. Kim, Y. Lee, Y.J. Seo, J.H. Lee, and C.D. Kim, Expression of paired-like homeodomain transcription factor 2c (PITX2c) in epidermal keratinocytes. Exp Cell Res 316 (2010) 3263-71. [36] M. Janicke, B. Renisch, and M. Hammerschmidt, Zebrafish grainyhead-like1 is a common marker of different non-keratinocyte epidermal cell lineages, which segregate from each other in a Foxi3-dependent manner. Int J Dev Biol 54 (2010) 837-50. [37] F. Genten, E. Terwinghe, and A. Danguy, Atlas of fish histology, Science Publishers, Enfield, NH, 2009. [38] C.F. Chen, C.Y. Chu, T.H. Chen, S.J. Lee, C.N. Shen, and C.D. Hsiao, Establishment of a transgenic zebrafish line for superficial skin ablation and functional validation of apoptosis modulators in vivo. PLoS One 6 (2011) e20654. [39] A. Quilhac, and J.Y. Sire, Spreading, proliferation, and differentiation of the epidermis after wounding a cichlid fish, Hemichromis bimaculatus. Anat Rec 254 (1999) 435-51. [40] J.L. Horng, L.Y. Lin, and P.P. Hwang, Functional regulation of H+-ATPase-rich cells in zebrafish embryos acclimated to an acidic environment. Am J Physiol Cell Physiol 296 (2009) C682-92. [41] F.P. Conte, and D.H. Lin, Kinetics of cellular morphogenesis in gill epithelium during sea water adaptation of oncorhynchus (walbaum). Comp Biochem Physiol 23 (1967) 945-57. [42] K. Uchida, and T. Kaneko, Enhanced chloride cell turnover in the gills of chum salmon fry in seawater. Zool Sci 13 (1996) 655-660. [43] Z. Dang, R.A. Lock, G. Flik, and S.E. Wendelaar Bonga, Na+/K+-ATPase immunoreactivity in branchial chloride cells of Oreochromis mossambicus exposed to copper. J Exp Biol 203 (2000) 379-87. [44] M.Y. Chou, C.D. Hsiao, S.C. Chen, I.W. Chen, S.T. Liu, and P.P. Hwang, Effects of hypothermia on gene expression in zebrafish gills: upregulation in differentiation and function of ionocytes as compensatory responses. J Exp Biol 211 (2008) 3077-84. [45] T. Sakamoto, K. Uchida, and S. Yokota, Regulation of the ion-transporting mitochondrion-rich cell during adaptation of teleost fishes to different salinities. Zoolog Sci 18 (2001) 1163-74. [46] S.D. McCormick, Endocrine control of osmoregulation in teleost fish. Am Zool 41 (2001) 781-794. [47] S. Hirose, and K. Hoshijima, Expression of endocrine genes in zebrafish larvae in response to environmental salinity. J Endocrinol 193 (2007) 481-491. [48] M.Y. Chou, J.C. Hung, L.C. Wu, S.P. Hwang, and P.P. Hwang, Isotocin controls ion regulation through regulating ionocyte progenitor differentiation and proliferation. Cell Mol Life Sci (2010). [49] G. Jacquillet, I. Rubera, and R.J. Unwin, Potential role of serine proteases in modulating renal sodium transport in vivo. Nephron Physiol 119 (2011) p22-9. [50] S.W. Reinhold, B. Kruger, C. Barner, F. Zoicas, M.C. Kammerl, U. Hoffmann, T. Bergler, B. Banas, and B.K. Kramer, Nephron-specific expression of components of the renin-angiotensin-aldosterone system in the mouse kidney. Journal of the renin-angiotensin-aldosterone system : JRAAS 13 (2012) 46-55. [51] L.E. Yang, M.B. Sandberg, A.D. Can, K. Pihakaski-Maunsbach, and A.A. McDonough, Effects of dietary salt on renal Na+ transporter subcellular distribution, abundance, and phosphorylation status. Am J Physiol Renal Physiol 295 (2008) F1003-16. [52] J. Song, X. Hu, M. Shi, M.A. Knepper, and C.A. Ecelbarger, Effects of dietary fat, NaCl, and fructose on renal sodium and water transporter abundances and systemic blood pressure. Am J Physiol Renal Physiol 287 (2004) F1204-12. [53] M.B. Sandberg, A.B. Maunsbach, and A.A. McDonough, Redistribution of distal tubule Na+-Cl- cotransporter (NCC) in response to a high-salt diet. Am J Physiol Renal Physiol 291 (2006) F503-8. [54] N. van der Lubbe, C.H. Lim, M.E. Meima, R. van Veghel, L.L. Rosenbaek, K. Mutig, A.H. Danser, R.A. Fenton, R. Zietse, and E.J. Hoorn, Aldosterone does not require angiotensin II to activate NCC through a WNK4-SPAK-dependent pathway. Pflugers Arch 463 (2012) 853-63. [55] M. Castaneda-Bueno, L.G. Cervantes-Perez, N. Vazquez, N. Uribe, S. Kantesaria, L. Morla, N.A. Bobadilla, A. Doucet, D.R. Alessi, and G. Gamba, Activation of the renal Na+:Cl- cotransporter by angiotensin II is a WNK4-dependent process. Proc Natl Acad Sci U S A 109 (2012) 7929-34. [56] L. Lai, X. Feng, D. Liu, J. Chen, Y. Zhang, B. Niu, Y. Gu, and H. Cai, Dietary salt modulates the sodium chloride cotransporter expression likely through an aldosterone-mediated WNK4-ERK1/2 signaling pathway. Pflugers Arch 463 (2012) 477-85. [57] H.L. Brooks, A.M. Sorensen, J. Terris, P.J. Schultheis, J.N. Lorenz, G.E. Shull, and M.A. Knepper, Profiling of renal tubule Na+ transporter abundances in NHE3 and NCC null mice using targeted proteomics. J Physiol 530 (2001) 359-66. [58] P.J. Schultheis, J.N. Lorenz, P. Meneton, M.L. Nieman, T.M. Riddle, M. Flagella, J.J. Duffy, T. Doetschman, M.L. Miller, and G.E. Shull, Phenotype resembling Gitelman's syndrome in mice lacking the apical Na+-Cl- cotransporter of the distal convoluted tubule. J Biol Chem 273 (1998) 29150-5. [59] C. Ledoussal, J.N. Lorenz, M.L. Nieman, M. Soleimani, P.J. Schultheis, and G.E. Shull, Renal salt wasting in mice lacking NHE3 Na+/H+ exchanger but not in mice lacking NHE2. Am J Physiol Renal Physiol 281 (2001) F718-27. [60] P.P. Hwang, and T.H. Lee, New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148 (2007) 479-97. [61] D.H. Evans, Freshwater fish gill ion transport: August Krogh to morpholinos and microprobes. Acta Physiol (Oxf) 202 (2011) 349-59. [62] P.P. Hwang, and M.Y. Chou, Zebrafish as an animal model to study ion homeostasis. Pflugers Arch 465 (2013) 1233-47. [63] P.P. Hwang, Ion uptake and acid secretion in zebrafish (Danio rerio). J Exp Biol 212 (2009) 1745-52. [64] P.P. Hwang and S.F. Perry, Ionicand acid-base regulation. In Fish Physiology. Zebrafish. 29th edition. Edited by Perry SF, Ekker M, Farrell AP, Brauner CJ. San Diego, CA: Academic (2010) 311-343 [65] W.J. Chang, and P.P. Hwang, Development of zebrafish epidermis. Birth Defects Res C Embryo Today 93 (2011) 205-14. [66] A.K. Dymowska, P.P. Hwang, and G.G. Goss, Structure and function of ionocytes in the freshwater fish gill. Respir Physiol Neurobiol 184 (2012) 282-92. [67] M. Esaki, K. Hoshijima, S. Kobayashi, H. Fukuda, K. Kawakami, and S. Hirose, Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Am J Physiol Regul Integr Comp Physiol 292 (2007) R470-80. [68] J.L. Horng, L.Y. Lin, C.J. Huang, F. Katoh, T. Kaneko, and P.P. Hwang, Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 292 (2007) R2068-76. [69] J.J. Yan, M.Y. Chou, T. Kaneko, and P.P. Hwang, Gene expression of Na+/H+ exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am J Physiol Cell Physiol 293 (2007) C1814-23. [70] T.Y. Lin, B.K. Liao, J.L. Horng, J.J. Yan, C.D. Hsiao, and P.P. Hwang, Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+ uptake in zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol 294 (2008) C1250-60. [71] T.H. Shih, J.L. Horng, P.P. Hwang, and L.Y. Lin, Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol 295 (2008) C1625-32. [72] Y. Kumai, and S.F. Perry, Ammonia excretion via Rhcg1 facilitates Na+ uptake in larval zebrafish, Danio rerio, in acidic water. Am J Physiol Regul Integr Comp Physiol 301 (2011) R1517-28. [73] Y.C. Lee, J.J. Yan, S.A. Cruz, J.L. Horng, and P.P. Hwang, Anion exchanger 1b, but not sodium-bicarbonate cotransporter 1b, plays a role in transport functions of zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol 300 (2011) C295-307. [74] T.H. Shih, J.L. Horng, S.T. Liu, P.P. Hwang, and L.Y. Lin, Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water. Am J Physiol Regul Integr Comp Physiol 302 (2012) R84-93. [75] S.K. Parks, M. Tresguerres, and G.G. Goss, Theoretical considerations underlying Na+ uptake mechanisms in freshwater fishes. Comp Biochem Physiol C Toxicol Pharmacol 148 (2008) 411-8. [76] Y. Kumai, A. Bahubeshi, S. Steele, and S.F. Perry, Strategies for maintaining Na+ balance in zebrafish (Danio rerio) during prolonged exposure to acidic water. Comp Biochem Physiol A Mol Integr Physiol 160 (2011) 52-62. [77] Y. Kumai, and S.F. Perry, Mechanisms and regulation of Na+ uptake by freshwater fish. Respir Physiol Neurobiol 184 (2012) 249-56. [78] P.J. Schultheis, L.L. Clarke, P. Meneton, M.L. Miller, M. Soleimani, L.R. Gawenis, T.M. Riddle, J.J. Duffy, T. Doetschman, T. Wang, G. Giebisch, P.S. Aronson, J.N. Lorenz, and G.E. Shull, Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 19 (1998) 282-5. [79] U. Holtback, A. Aperia, and G. Celsi, High salt alone does not influence the kinetics of the Na+-H+ antiporter. Acta Physiol Scand 148 (1993) 55-61. [80] T. Shono, D. Kurokawa, T. Miyake, and M. Okabe, Acquisition of glial cells missing 2 enhancers contributes to a diversity of ionocytes in zebrafish. PLoS One 6 (2011) e23746. [81] J. Hiroi, T. Kaneko, and M. Tanaka, In vivo sequential changes in chloride cell morphology in the yolk-sac membrane of mozambique tilapia (Oreochromis mossambicus) embryos and larvae during seawater adaptation. J Exp Biol 202 Pt 24 (1999) 3485-95. [82] M.Y. Chou, J.C. Hung, L.C. Wu, S.P. Hwang, and P.P. Hwang, Isotocin controls ion regulation through regulating ionocyte progenitor differentiation and proliferation. Cell Mol Life Sci 68 (2011) 2797-809. [83] G.E. Nilsson, A. Dymowska, and J.A. Stecyk, New insights into the plasticity of gill structure. Respir Physiol Neurobiol 184 (2012) 214-22. [84] N. Hirai, M. Tagawa, T. Kaneko, T. Seikai, and M. Tanaka, Distributional changes in branchial chloride cells during freshwater adaptation in Japanese sea bass Lateolabrax japonicus. Zool Sci 16 (1999) 43-49. [85] Q. Al-Awqati, and X.B. Gao, Differentiation of intercalated cells in the kidney. Physiology (Bethesda) 26 (2011) 266-72. [86] Q. Al-Awqati, Terminal differentiation in epithelia: the role of integrins in hensin polymerization. Annu Rev Physiol 73 (2011) 401-12. [87] T. Hirata, T. Kaneko, T. Ono, T. Nakazato, N. Furukawa, S. Hasegawa, S. Wakabayashi, M. Shigekawa, M.H. Chang, M.F. Romero, and S. Hirose, Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol Regul Integr Comp Physiol 284 (2003) R1199-212. [88] J.C. Bradshaw, Y. Kumai, and S.F. Perry, The effects of gill remodeling on transepithelial sodium fluxes and the distribution of presumptive sodium-transporting ionocytes in goldfish (Carassius auratus). J Comp Physiol B 182 (2012) 351-66. [89] Y. Ito, S. Kobayashi, N. Nakamura, H. Miyagi, M. Esaki, K. Hoshijima, and S. Hirose, Close Association of Carbonic Anhydrase (CA2a and CA15a), Na+/H+ Exchanger (Nhe3b), and Ammonia Transporter Rhcg1 in Zebrafish Ionocytes Responsible for Na+ Uptake. Frontiers in physiology 4 (2013) 59. [90] W.J. Chang, Y.F. Wang, H.J. Hu, J.H. Wang, T.H. Lee, and P.P. Hwang, Compensatory regulation of Na+ absorption by Na+/H+ exchanger and Na+-Cl- cotransporter in zebrafish (Danio rerio). Frontiers in zoology 10 (2013) 46. [91] Y.J. Guh, Y.C. Tseng, C.Y. Yang, and P.P. Hwang, Endothelin-1 regulates H+-ATPase-dependent transepithelial H+ secretion in zebrafish. Endocrinology 155 (2014) 1728-37. [92] R.W. Kwong, and S.F. Perry, Cortisol regulates epithelial permeability and sodium losses in zebrafish exposed to acidic water. J Endocrinol 217 (2013) 253-64. [93] Y. Kumai, N.J. Bernier, and S.F. Perry, Angiotensin-II promotes Na+ uptake in larval zebrafish, Danio rerio, in acidic and ion-poor water. J Endocrinol 220 (2014) 195-205. [94] B.W. Jones, R.D. Fetter, G. Tear, and C.S. Goodman, glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82 (1995) 1013-23. [95] V. Trayer, N. Sejourne, S. Gay, and V. Thermes, Evidence for two distinct waves of epidermal ionocyte differentiation during medaka embryonic development. Dev Dyn 244 (2015) 888-902. [96] R.W. Kwong, Y. Kumai, and S.F. Perry, The physiology of fish at low pH: the zebrafish as a model system. J Exp Biol 217 (2014) 651-62. [97] J.P. Breves, S.B. Serizier, V. Goffin, S.D. McCormick, and R.O. Karlstrom, Prolactin regulates transcription of the ion uptake Na+/Cl- cotransporter (ncc) gene in zebrafish gill. Molecular and cellular endocrinology 369 (2013) 98-106. [98] B.K. Liao, R.D. Chen, and P.P. Hwang, Expression regulation of Na+-K+-ATPase alpha1-subunit subtypes in zebrafish gill ionocytes. Am J Physiol Regul Integr Comp Physiol 296 (2009) R1897-906. [99] A.K. Dymowska, D. Boyle, A.G. Schultz, and G.G. Goss, The role of acid-sensing ion channels in epithelial Na+ uptake in adult zebrafish (Danio rerio). J Exp Biol 218 (2015) 1244-51.
摘要: 本篇論文試著解開在淡水硬骨魚滲透壓調節研究之中的未竟之謎。我先製造一個人工的酸性水體,再分析斑馬魚如何在其中維持體內鈉離子恆定,特別著眼在細胞的調控以及細胞分化如何參與酸適應的機制。希冀本篇論文能對脊椎動物的生理調節研究有所裨益。 硬骨魚在鰓表皮及子稚魚皮膚特化出一群離子調節細胞作為主要的滲透壓調節構造。為了維持體內的鈉離子恆定,淡水硬骨魚必須從環境中吸收鈉離子,而離子細胞便是其運輸鈉離子的主要細胞。過去的研究已知酸性環境會造成淡水魚體內鈉離子流失,然而淡水魚如何因應由此而生的鈉離子失衡的研究仍闕如。過去的研究曾提出離子細胞的分化會參與調控斑馬魚的滲透壓調節,而本篇研究目的在探討離子細胞分化如何參與酸適應情況下斑馬魚鈉離子恆定機制的調節。 本文第一章中我整理歸納了迄今有關斑馬魚表皮發育的研究並介紹目前已知的離子細胞分化過程。在第二章裡我敘述如何發現斑馬魚在酸適應的情況下維持鈉離子恆定的機制,而這機制是仰賴兩群表現不同鈉離子運輸蛋白的離子細胞亞型間的互相補償作用來維持。本文第三章中我找出控制離子細胞亞型分化的因子,進一步證實這些因子在酸適應的過程中控制了前述的細胞補償機制。 本篇論文應用發育生物學的知識與技術來研究一個傳統生理學領域的問題,儘管本研究只對這領域貢獻了一小部分的知識,但展示了在傳統學科中應用新的學門有可能另闢蹊徑來回答長年無法解釋的問題,作為日後研究的參考。
In this thesis, I tried to solve the puzzle about osmoregulation of freshwater teleost. I generated an artificial acidic environment and analyzed how do zebrafish maintain Na+ homeostasis under acid stress. I especially focused on cellular regulation and how do cell differentiation participate acid acclimation process. Hoping that this study can benefit our knowledge in physiological regulation of vertebrates. Osmolarity of teleost is mainly regulated by a specific cell type, the ionocyte, that presented in gill epithelium and larva skin. Freshwater teleost uptake Na+ from environment for maintaining Na+ homeostasis, and ionocytes are the dominant cells for Na+ transportation. Acid exposure is known to cause Na+ lose of freshwater fish, but little is known about how do freshwater fish compensate this disruption of Na+ homeostasis. Ionocyte differentiation was proposed to participate in osmoregulation of zebrafish, and I investigated how do ionocyte differentiation regulates Na+ homeostasis during zebrafish acid acclimation in this study. In part 1 of this thesis, I reviewed current studies about zebrafish epidermis development and introduced cell differentiation process of ionocytes. In part 2 of this thesis, I described that within acidic environment, zebrafish Na+ homeostasis is maintained by a compensational regulation between two ionocyte subtypes that express different Na+ transport proteins. In part 3 of this thesis, I identified the factors that control ionocyte subtypes differentiation and investigate their function in controlling the cellular regulation for Na+ homeostasis during the acid acclimation process. This thesis demonstrated that knowledge and techniques from developmental biology could benefit a traditional research field. Although the work I presented is just a little progress to the field, it could be the beginning of digging unsolved question in this field.
URI: http://hdl.handle.net/11455/90084
文章公開時間: 2018-08-28
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.