Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90098
DC FieldValueLanguage
dc.contributor楊長賢zh_TW
dc.contributor.author黃品瑄zh_TW
dc.contributor.authorPin-Syuan Huangen_US
dc.contributor.other生物科技學研究所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-09T02:07:15Z-
dc.identifier.citation謝萬權。1969。蕨類植物 第一號。台中市:興大學理工學院 廖衛奇。1974。植物的演化。台中市:中央書局 陳靖棻。2004。異物種中GIGANTEA同源基因之選殖與其功能性之分析。國立中興大學生物科技學研究所博士論文。台灣:台中。 欒乃勳。2006。鐵線蕨GIGANTEA(GI)同源基因與阿拉伯芥NAC-like基因之分子選殖與功能性分析。國立中興大學生物科技學研究所碩士論文。台灣:台中。 張玉雲。2009。植物花朵發育與開花時間相關基因之研究。國立中興大學生物科技學研究所博士論文。台灣:台中。 沈姿儀。2013。阿拉伯芥與蕨類GIGANTEA(GI)同源基因之功能性分析顯示其N端與C端可能之功能差異。國立中興大學生物科技學研究所碩士論文。台灣:台中。 許巍瀚。2012。阿拉伯芥中調控細胞分裂與配子體發育相關基因之功能性分析。 國立中興大學生物科技學研究所博士論文。台灣:台中。 Apel K, Hirt H (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 55, 373-399. Asada K (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual review of plant biology, 50(1), 601-639. Asada K (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant physiology, 141(2), 391-396. Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P (1993). Physiological signals that induce flowering. The Plant Cell, 5(10), 1147. Bernier G, Périlleux C (2005). A physiological overview of the genetics of flowering time control. Plant Biotechnology Journal, 3(1), 3-16. Blázquez MA (2000). Flower development pathways. Journal of Cell Science, 113(20), 3547-3548. Bleecker AB, Patterson SE (1997). Last exit: senescence, abscission, and meristem arrest in Arabidopsis. The Plant Cell, 9(7), 1169. Boo YC, Jung J (1999). Water Deficit-Induced Oxidative Stress and Antioxidative Defenses in Rice Plants. Journal of Plant Physiology, 155(2), 255-261. Boss PK, Bastow RM, Mylne JS, Dean C (2004). Multiple pathways in the decision to flower: enabling, promoting, and resetting. The Plant Cell, 16(suppl 1), S18-S31. Cao, S. Q., Song, Y. Q., Su, L. (2007). Freezing sensitivity in the gigantea mutant of Arabidopsis is associated with sugar deficiency. Biologia plantarum, 51(2), 359-362. Chi YH, Paeng SK, Kim MJ, Hwang GY, Melencion SMB, Oh HT, Lee SY (2013). Redox-dependent functional switching of plant proteins accompanying with their structural changes. Frontiers in plant science, 4. Dunford RP, Griffiths S, Christodoulou V, Laurie DA (2005). Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theoretical and Applied Genetics, 110(5), 925-931. Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999). GIGANTEA: a circadian clock‐controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane‐spanning domains. The EMBO journal, 18(17), 4679-4688. Gan S, Amasino RM (1997). Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiology,113(2), 313. Guo H, Yang H, Mockler TC, Lin C (1998). Regulation of flowering time by Arabidopsis photoreceptors. Science, 279(5355), 1360-1363. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 422(6933), 719-722. He Y, Gan S (2002). A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. The Plant Cell, 14(4), 805-815. Höfgen R, Willmitzer L (1988). Storage of competent cells for Agrobacterium transformation. Nucleic acids research, 16(20), 9877. Huq E, Tepperman JM, Quail PH (2000). GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proceedings of the National Academy of Sciences, 97(17), 9789-9794. Imaizumi T, Kay SA (2006). Photoperiodic control of flowering: not only by coincidence. Trends in plant science, 11(11), 550-558. Jing HC, Sturre MJ, Hille J, Dijkwel PP (2002). Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence.The Plant Journal, 32(1), 51-63. Kim J, Geng R, Gallenstein RA, Somers DE (2013). The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development, 140(19), 4060-4069. Koornneef M, Hanhart CJ, Van der Veen JH (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana.Molecular and General Genetics MGG, 229(1), 57-66. Kurepa J, Smalle J, Van Montagu M, Inzé D (1998). Effects of sucrose supply on growth and paraquat tolerance of the late-flowering gi-3 mutant. Plant growth regulation, 26(2), 91-96. Lascano HR, Melchiorre MN, Luna CM, Trippi VS (2003). Effect of photooxidative stress induced by paraquat in two wheat cultivars with differential tolerance to water stress. Plant science, 164(5), 841-848. Lim PO, Woo HR, Nam HG (2003). Molecular genetics of leaf senescence in Arabidopsis. Trends in plant science, 8(6), 272-278. Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka KI, Miura E, Xoconostle-Cázares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ (2007). FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. The Plant Cell, 19(5), 1488-1506. Luo X, Zhang C, Sun X, Qin Q, Zhou M, Paek KY, Cui Y (2011). Isolation and characterization of a Doritaenopsis hybrid GIGANTEA gene, which possibly involved in inflorescence initiation at low temperatures. Kor J Hort Sci Technol,29(2), 135-143. Marín IC, Loef I, Bartetzko L, Searle I, Coupland G, Stitt M, Osuna D (2011). Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta, 233(3), 539-552. Maruta T, Inoue T, Noshi M, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S (2012). Cytosolic ascorbate peroxidase 1 protects organelles against oxidative stress by wounding-and jasmonate-induced H2O2 in Arabidopsis plants. Biochimica et Biophysica Acta (BBA)-General Subjects,1820(12), 1901-1907. Mittag M, Kiaulehn S, Johnson CH (2005). The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to?. Plant physiology, 137(2), 399-409. Mittler R (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9), 405-410. Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005). Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. The Plant Cell, 17(8), 2255-2270. Mouradov A, Cremer F, Coupland G (2002). Control of flowering time interacting pathways as a basis for diversity. The Plant Cell, 14(suppl 1), S111-S130. Murakami S, Johnson TE (1996). A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics, 143(3), 1207-1218. Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998). Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany, 49(321), 623-647. Noodén LD, Penney JP (2001). Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae). Journal of Experimental Botany, 52(364), 2151-2159. Oh SA, Park JH, Lee GI, Paek KH, Park SK, Nam HG (1997). Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. The Plant Journal, 12(3), 527-535. Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ Kay SA, Nam HG (1999). Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science, 285(5433), 1579-1582. Peng M, Kuc J (1992). Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology,82(6), 696-699. Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995). Phytochromes: photosensory perception and signal transduction.Science, 268(5211), 675-680. Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007). FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science, 318(5848), 261-265. Shieh WC (1994). 19. PTERIDACEAE. Flora of Taiwan, second edition. 1: 219. Simpson GG, Dean C (2002). Arabidopsis, the Rosetta stone of flowering time?. Science, 296(5566), 285-289. Smith H (2000). Phytochromes and light signal perception by plants-an emerging synthesis. Nature, 407(6804), 585-591. Steller H (1995). Mechanisms and genes of cellular suicide. Science, 267(5203), 1445-1449. Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410(6832), 1116-1120. Taize L, Zeiger E (2002). Plant physiology. Third Edition Sinauer Associates., Inc. Sunderland, Massachusetts. Taylor CB, Bariola PA, Raines RT, Green PJ (1993). RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. Proceedings of the National Academy of Sciences, 90(11), 5118-5122. Urs RR, Roberts PD, Schultz DC (2006). Localisation of hydrogen peroxide and peroxidase in gametophytes of Ceratopteris richardii (C‐fern) grown in the presence of pathogenic fungi in a gnotobiotic system. Annals of applied biology, 149(3), 327-336. Villarreal F, Martín V, Colaneri A, González-Schain N, Perales M, Martín M, Lombardo C, Braun HP, Bartoli C, Zabaleta E (2009). Ectopic expression of mitochondrial gamma carbonic anhydrase 2 causes male sterility by anther indehiscence. Plant molecular biology, 70(4), 471-485. Wang Y, Ying Y, Chen J, Wang X (2004). Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Science, 167(4), 671-677. Wilson RN, Heckman JW, Somerville CR (1992). Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiology, 100(1), 403-408. Woo HR, Kim JH, Nam HG, Lim PO (2004). The delayed leaf senescence mutants of Arabidopsis, ore1, ore3, and ore9 are tolerant to oxidative stress. Plant and Cell Physiology, 45(7), 923-932. Yanovsky MJ, Kay SA (2003). Living by the calendar: how plants know when to flower. Nature Reviews Molecular Cell Biology, 4(4), 265-276. Yazawa M, Sadaghiani AM, Hsueh B, Dolmetsch RE (2009). Induction of protein-protein interactions in live cells using light. Nature biotechnology, 27(10), 941-945. Zhao XY, Liu MS, Li JR, Guan CM, Zhang XS (2005). The wheat TaGI1, involved in photoperiodic flowering, encodesan Arabidopsis GI ortholog. Plant molecular biology, 58(1), 53-64.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/90098-
dc.description.abstractGIGANTEA(GI)基因在阿拉伯芥中是受光週期(circadian clock)調控並促進開花的重要基因,此外也被研究出與調控老化相關。在阿拉伯芥中,GI基因突變會使植株延遲開花並提高植株對氧化壓力的抗性。而研究顯示在開花途徑中GI蛋白藉由和FLAVIN-BINDING, KELCH REPEAT, F-BOX 1(FKF1)蛋白進行交互作用,進而調控下游的開花基因,如CONSTANS(CO)等基因。實驗室從屬於非開花植物的銀脈鳳尾蕨選殖到GI的同源基因,並命名為PcGI。PcGI的基因表現和GI同樣會受光週期調控。進一步研究發現,將阿拉伯芥GI基因(AtGI)、鳳尾蕨GI基因(PcGI)、含有阿拉伯芥GI基因的C端和鳳尾蕨GI的N端互相置換的重組基因(PcAt-GI)以及含阿拉伯芥GI基因的N端和鳳尾蕨GI的C端互相置換的重組基因(AtPc-GI)大量暫時性表現於菸草表皮細胞,發現AtGI蛋白只位於細胞核中,並呈現斑點狀分布。PcGI則會出現在細胞核和過氧化小體(peroxisome)中。PcAt-GI會位於在核及過氧化小體,且情況比AtPc-GI好。顯示AtGI的C端相較於N端在入細胞核及開花調控的功能上扮演較重要角色。PcGI的N端則會使PcGI進入過氧化小體,並參與氧化逆境之調控。進一步發現,於紅光以及微光處理下PcGI進入過氧化小體的情形比藍光處理的組別明顯,PcGI在藍光較少的環境促使PcGI進入過氧化小體。而藍光下PcGI與AtGI均會受到FKF1影響而造成核中的圖形分佈從斑點狀變成均勻分布,而在紅光下則影響較小,顯示AtGI與PcGI均會受藍光誘導與FKF1交互作用。而PcGI與catalase3(CAT3)互為競爭關係,其使CAT3無法進入過氧化小體分解過氧化氫而造成過氧化氫累積。綜合上述結果顯示,開花植物AtGI受藍光誘導並藉由AtGI之C端使AtGI進入核中與FKF1交互作用並調控開花。而鳳尾蕨類PcGI可受光照影響,判斷是否藉由PcGI之N端進入過氧化小體與CAT3競爭並造成植株過氧化氫濃度上升進而調控氧化逆境。因而推測生活於較陰暗潮濕之蕨類植物,其GI功能為調節氧化逆境已達到抗菌抗病的功能,隨著演化為生活於光亮乾燥的開花植物,GI之功能轉變為以調控開花為主。zh_TW
dc.description.abstractIn Arabidopsis, GIGANTE (GI) is known as an important flowering time regulatory gene, which is regulated by circadian clock. Mutation in GI caused the delay of the flowering time and the increase of the tolerance to oxidative stress in Arabidopsis. GI has been reported to interact with FLAVIN-BINDING, KELCH REPEAT, F-BOX 1(FKF1) to regulate downstream genes such as CONSTANS (CO) in flowering pathway. We have cloned GI orthologue PcGI from non-flowering ferns Cretan Brake. The expression of PcGI also showed a circadian rhythm. Furthermore, transient expression of AtGI, PcGI, PcAt-GI which contained the C-terminus of AtGI and N-terminus of PcGI, and AtPc-GI which contained the C-terminus of PcGI and N-terminus of AtGI were performed in tobacco cells. The results indicated that the localization of AtGI was detected only in nucleus, which had the speckled nucleus. The PcGI was detected in nucleus as well as in peroxisome. The localization of PcAt-GI in peroxisome and nucleus was stronger than that for AtPc-GI. These results revealed that the C-terminus of the AtGI is functionally more important than N-terminus in nucleus localization and flowering. The N-terminal portion of PcGI is the major motif for PcGI to localize in peroxisome and is associated with senescence and oxidative stress. PcGI was detected in peroxisome in red and weak light, but not in blue light. The AtGI and PcGI were changing from speckled to disperse in nucleus by interacting with FKF1 in blue light but with less effect in red and weak light. PcGI competed and prevented the entering of catalase 3 (CAT3) into peroxisome and resulted in the hydrogen peroxide accumulation. Our result implied that PcGI played a major role in regulating oxidative stress and antibiotic tolerance in ferns whereas GI orthologues become more important in regulating flowering time in flowering plants during evolution.en_US
dc.description.tableofcontents摘要 i Abstract iii 前言 1 一、植物開花機制之調控 1 二、GIGANTEA(GI)之生理功能 2 (一)、生理時鐘 3 (二)、開花 3 (三)、氧化逆境與老化 4 三、植物葉片老化及細胞程式性死亡 4 四、非開花植物(蕨類)之生命週期 6 五、GIGANTEA(GI)作用機制與功能探討 7 材料方法 9 結果 21 一、開花植物與蕨類植物GI同源基因之分析 21 二、阿拉伯芥與鳳尾蕨GI以及其重組基因之分子選殖與載體構築 21 三、以細胞層次分析阿拉伯芥、蕨類及重組序列之GI蛋白於菸草表皮細胞中之分佈情形 22 四、以CAT3及各GI蛋白共表現於菸草表皮細胞中並觀察其共表現分佈之差異 23 五、蕨類及阿拉伯芥之GI基因對於氧化逆境影響之差異 24 六、阿拉伯芥及鳳尾蕨GI蛋白在FKF1表現差異下於紅光、藍光、微光及完全黑暗中之情形 25 討論 28 一、阿拉伯芥GI基因與鳳尾蕨GI基因之功能性差異分析 28 二、GI與氧化壓力的關係 30 三、非開花植物的GI功能性探討 31 四、GI基因於植物演化上功能的轉變 33 五、結論 33 六、未來工作 34 參考文獻 35 圖表 42 表 42 表1. 本篇所使用PCR引子(Primer)序列 42 表2. 本篇所使用real-time PCR引子(Primer)序列 43 表3. 演化樹基因序列之物種及登錄號碼 44 圖 45 圖1. 開花植物之單子葉、雙子葉以及蕨類植物的GI之演化樹分析 45 圖2. 開花植物與蕨類植物的GI胺基酸序列比對分析 46 圖3. 將阿拉伯芥AtGI、鳳尾蕨PcGI及重組APGI、PAGI基因接上黃色螢光蛋白(YFP)之分子構築 47 圖4. 阿拉伯芥、鳳尾蕨及重組之GI蛋白在菸草表皮細胞表現之情形 48 圖5. 將阿拉伯芥GI、鳳尾蕨GI及重組PAGI基因接上綠色螢光蛋白(GFP)之分子構築 49 圖6. 阿拉伯芥、鳳尾蕨之GI及重組PAGI白蛋與CAT3在菸草表皮細胞共表現之情形 50 圖7. 以高倍率觀察鳳尾蕨GI與CAT3在過氧化小體中的表現情形 51 圖8. 以高倍率觀察重組PAGI與CAT3在過氧化小體中的表現情形 52 圖9. 大量異位表現阿拉伯芥及鳳尾蕨GI於晚開花突變株gi-1在強光逆境下的影響 53 圖10. 在避光條件下大量阿拉伯芥與鳳尾蕨GI於菸草表皮細胞及其對過氧化氫累積的影響 54 圖11.野生型鐵線蕨與阿拉伯芥於一般生長環境下之過氧化氫累積差異 55 圖12. FKF1及含有藍色螢光CFP的阿拉伯芥、鳳尾蕨GI之分子構築 56 圖13. 於藍光處理下阿拉伯芥與鳳尾蕨GI蛋白表現於菸草表皮細胞之情形;以及各種GI於FKF1蛋白表現差異下之情形 57 圖14. 於紅光處理下阿拉伯芥與鳳尾蕨GI蛋白表現於菸草表皮細胞之表現情形;以及各種GI於FKF1蛋白表現差異下之情形 58 圖15. 於微光處理下阿拉伯芥與鳳尾蕨GI蛋白表現於菸草表皮細胞之表現情形;以及各種GI於FKF1蛋白表現差異下之情形 59 圖16. GI基因在植物演化上的功能轉變之假設模式圖 60 附圖 61 附圖1. 植物開花基因調控示意圖 61 附圖2. pGEM®-T Easy vector之圖譜 62 附圖3. pEpyon-32K之圖譜 63 附圖4. pEpyon-34K之圖譜 64 附圖5. pEpyon-36K之圖譜 65 附圖6. pEpyon-37K之圖譜 66 附圖7. DNA Maker 67zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2015-08-20起公開。zh_TW
dc.subject蕨類zh_TW
dc.subject阿拉伯芥zh_TW
dc.subject基因zh_TW
dc.subjectGIen_US
dc.titleThe Different Response to Oxidative Stress for GIGANTEA(GI) Orthologues from Arabidopsis and Fernsen_US
dc.title阿拉伯芥與蕨類GIGANTEA同源基因在處理氧化壓力調節之功能差異zh_TW
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2015-08-20zh_TW
dc.date.openaccess2015-08-20-
Appears in Collections:生物科技學研究所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.