Please use this identifier to cite or link to this item:
標題: In Vitro assembly of Bamboo mosaic virus chimeric coat protein into virus-like particles
作者: 謝旻諺
Min-Yen Hsieh
關鍵字: 類病毒顆粒
virus like particles(VLPs)
bamboo mosaic virus(BaMV)
subunit vaccine
foot-and-mouth disease(FMDV)
引用: 鍾明華、李淑慧。1998。台灣豬隻口蹄疫病毒特性及病理變化。引自:口蹄疫及豬瘟診斷訓練班講義。台灣省家畜衛生所主編。1-13頁。 游佳原。2006。竹嵌紋病毒衛星核酸在生體外包被作用之研究。國立中興大學生物科技研究所碩士論文。 羅珮瑄。2009。竹嵌紋病毒外鞘蛋白的多型現象及次單位相互作用之分析。國立中興大學生物科技研究所碩士論文。 Atabekov, J., Rodionova, N., Karpova, O., Kozlovsky, S., Novikov, V., and Arkhipenko, M. (2001). Translational activation of encapsidated potato virus X RNA by coat protein phosphorylation. Virology 286(2), 466-474. Babin, C., Majeau, N., and Leclerc, D. (2013). Engineering of papaya mosaic virus (PapMV) nanoparticles with a CTL epitope derived from influenza NP. J Nanobiotechnology 11(10), 10.1186. Bachrach, H. L. (1968). Foot-and-mouth disease. Annual Reviews in Microbiology 22(1), 201-244. Baneyx, F. (1999). Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology 10(5), 411-421. Baratova, L., Grebenshchikov, N., Dobrov, E., Gedrovich, A., Kashirin, I., Shishkov, A., Efimov, A., Järvekülg, L., Radavsky, Y. L., and Saarma, M. (1992). The organization of potato virus X coat proteins in virus particles studied by tritium planigraphy and model building. Virology 188(1), 175-180. Barteling, S. (2002). Development and performance of inactivated vaccines against foot and mouth disease. Revue scientifique et technique-Office international des épizooties 21(3), 577-583. Barteling, S., and Vreeswijk, J. (1991). Developments in foot-and-mouth disease vaccines. Vaccine 9(2), 75-88. Bartels, T., Schäfer, H., Liebermann, H., Burger, R., and Beyer, J. (1994). T-lymphocyte responses in guinea pigs vaccinated with foot-and-mouth disease virus. Veterinary Immunology and Immunopathology 40(3), 213-223. Barton, D. J., O'Donnell, B. J., and Flanegan, J. B. (2001). 5′ cloverleaf in poliovirus RNA is a cis‐acting replication element required for negative‐strand synthesis. Borman, A. M., Deliat, F., and Kean, K. (1994). Sequences within the poliovirus internal ribosome entry segment control viral RNA synthesis. The EMBO Journal 13(13), 3149. Bragard, C., Duncan, G., Wesley, S., Naidu, R., and Mayo, M. (2000). Virus-like particles assemble in plants and bacteria expressing the coat protein gene of Indian peanut clump virus. Journal of General Virology 81(1), 267-272. Brown, F. (2003). The history of research in foot-and-mouth disease. Virus Research 91(1), 3-7. Butler, P. (1999). Self–assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 354(1383), 537- 550. Butler, P. J. G. (1984). The current picture of the structure and assembly of tobacco mosaic virus. Journal of General Virology 65(2), 253-279. Caspar, D. (1962). Assembly and stability of the tobacco mosaic virus particle. Advances in Protein Chemistry 18, 37-121. Cereghino, G. P. L., and Cregg, J. M. (1999). Applications of yeast in biotechnology: protein production and genetic analysis. Current Opinion in Biotechnology 10(5),422-427. Chang, B.Y., Lin, N.S., Liou, D.Y., Chen, J.P., Liou, G.G., and Hsu, Y.H. (1997). Subcellular localization of the 28 kDa protein of the triple-gene-block of bamboo mosaic potexvirus. Journal of General Virology 78(5), 1175-1179. Chang, T.C., Chang, C.C., Tsai, S.S., Chang, G.N., Kuo, M., and Chung, W.B. (1997). Short Communication: An Outbreak of Foot-and-mouth Disease in Pigs in Southern Taiwan. 中華民國獸醫學會雜誌 23(3), 269-273. Culver, J. N. (2002). Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance. Annual Review of Phytopathology 40(1), 287-308. De Diego, M., Brocchi, E., Mackay, D., and De Simone, F. (1997). The non-structural polyprotein 3ABC of foot-and-mouth disease virus as a diagnostic antigen in ELISA to differentiate infected from vaccinated cattle. Archives of Virology 142(10), 2021-2033. Doel, T. (2003). FMD vaccines. Virus Research 91(1), 81-99. Doel, T., Williams, L., and Barnett, P. (1994). Emergency vaccination against foot-and-mouth disease: rate of development of immunity and its implications for the carrier state. Vaccine 12(7), 592-600. Dolja, V., Haldeman, R., Robertson, N., Dougherty, W., and Carrington, J. (1994). Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. The EMBO Journal 13(6), 1482. Dolja, V. V., Haldeman-Cahill, R., Montgomery, A. E., Vandenbosch, K. A., and Carrington, J. C. (1995). Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206(2), 1007- 1016. Donaldson, A. (1997). Foot-and-mouth disease in Taiwan. Veterinary Record 140. Dunn, C., and Donaldson, A. (1997). Natural adaption to pigs of a Taiwanese isolate of foot-and-mouth disease virus. Veterinary Record 141(7), 174-175. Erickson, J. W., Abouhaidar, M., and Bancroft, J. (1978). The specificity of papaya mosaic virus assembly. Virology 90(1), 60-66. Erickson, J. W., Frankenberger, E. A., Rossmann, M. G., Fout, G. S., Medappa, K., and Rueckert, R. R. (1983). Crystallization of a common cold virus, human rhinovirus 14 somorphism with poliovirus crystals. Proceedings of the National Academy of Sciences 80(4), 931-934. Falk, M., Sobrino, F., and Beck, E. (1992). VPg gene amplification correlates with infective particle formation in foot-and-mouth disease virus. Journal of Virology 66(4), 2251-2260. Forss, S., Strebel, K., Beck, E., and Schaller, H. (1984). Nucleotide sequence and genome organization of foot-and-mouth disease virus. Nucleic Acids Research 12(16), 6587-6601. Fraenkel-Conrat, H., and Williams, R. C. (1955). Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proceedings of the National Academy of Sciences of the United States of America 41(10), 690. Francis, M., Ouldridge, E., and Black, L. (1983). Antibody response in bovine pharyngeal fluid following foot-and-mouth disease vaccination and, or, exposure to live virus. Research in Veterinary Science 35(2), 206-210. Geigenmüller-Gnirke, U., Nitschko, H., and Schlesinger, S. (1993). Deletion analysis of the capsid protein of Sindbis virus: identification of the RNA binding region. Journal of Virology 67(3), 1620-1626. Grubman, M., and Mason, P. (2002). Prospects, including time-frames, for improved foot and mouth disease vaccines. Revue scientifique et technique-Office international des épizooties 21(3), 589-595. Hruby, D. E., and Roberts, W. (1976). Encephalomyocarditis virus RNA: variations in polyadenylic acid content and biological activity. Journal of Virology 19(2), 325-330. Huang, C., Jong, M., and Lin, S. (2000). Characteristics of foot and mouth disease virus in Taiwan. The Journal of veterinary medical science/the Japanese Society of Veterinary Science 62(7), 677. Ish-Horowicz, D., and Burke, J. (1981). Rapid and efficient cosmid cloning. Nucleic Acids Research 9(13), 2989-2898. Jackson, T., King, A. M., Stuart, D. I., and Fry, E. (2003). Structure and receptor binding. Virus Research 91(1), 33-46. Klug, A. (1999). The tobacco mosaic virus particle: structure and assembly. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 354(1383), 531-535. Klug, A., and Caspar, D. L. (1960). The structure of small viruses. Adv. Virus Res 7, 225-325. Knowles, N., and Samuel, A. (2003). Molecular epidemiology of foot-and-mouth disease virus. Virus Research 91(1), 65-80. Kost, T. A., and Condreay, J. P. (1999). Recombinant baculoviruses as expression vectors for insect and mammalian cells. Current opinion in biotechnology 10(5), 428-433. Kwon, S.J., Park, M.R., Kim, K.W., Plante, C. A., Hemenway, C. L., and Kim, K.H. (2005). cis-Acting sequences required for coat protein binding and in vitro assembly of Potato virus X. Virology 334(1), 83-97. Li, Y.I., Cheng, Y.M., Huang, Y.L., Tsai, C.H., Hsu, Y.H., and Meng, M. (1998). Identification and characterization of the Escherichia coli-expressed RNA-dependent RNA polymerase of bamboo mosaic virus. Journal of Virology 72(12), 10093-10099. Li, Y.I., Shih, T.W., Hsu, Y.H., Han, Y.T., Huang, Y.L., and Meng, M. (2001). The helicase-like domain of plant potexvirus replicase participates in formation of RNA 5′ cap structure by exhibiting RNA 5′-triphosphatase activity. Journal of Virology 75(24), 12114-12120. Lin, N.S., and Hsu, Y.H. (1994). A satellite RNA associated with bamboo mosaic potexvirus. Virology 202(2), 707-714. Lin, N.S., Lin, F.Z., Huang, T.Y., and Hsu, Y.H. (1992). Genome properties of bamboo mosaic virus. Phytopathology 82(7), 731-734. Lin, N., Lim, B., Lo, N., Hu, C., Chow, T., and Hsu, Y. (1994). Nucleotide sequence of the genomic RNA of bamboo mosaic potexvirus. Journal of General Virology (United Kingdom). Luytjes, W., Krystal, M., Enami, M., Parvin, J. D., and Palese, P. (1989). Amplification, expression, and packaging of a foreign gene by influenza virus. Cell 59(6), 1107-1113. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1992). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Biotechnology Series, 17-17. Pensaert, M. (1989). 'Virus infections of porcines.' Elsevier Science Publishers BV. Plchova, H., Moravec, T., Hoffmeisterova, H., Folwarczna, J., and Cerovska, N. (2011).Expression of Human papillomavirus 16 E7ggg oncoprotein on N-and C-terminus of Potato virus X coat protein in bacterial and plant cells. Protein Expression and Purification 77(2), 146-152. Pollack, J. R., and Ganem, D. (1993). An RNA stem-loop structure directs hepatitis B virus genomic RNA encapsidation. Journal of Virology 67(6), 3254-3263. Rao, A., and Grantham, G. L. (1995). Biological significance of the seven amino-terminal basic residues of brome mosaic virus coat protein. Virology 211(1), 42- 52. Richards, K. E., and Williams, R. C. (1972). Assembly of tobacco mosaic virus in vitro: effect of state of polymerization of the protein component. Proceedings of the National Academy of Sciences 69(5), 1121-1124. Rioux, G., Babin, C., Majeau, N., and Leclerc, D. (2012). Engineering of papaya mosaic virus (PapMV) nanoparticles through fusion of the HA11 peptide to several putative surface-exposed sites. PloS One 7(2), e31925. Rohll, J. B., Moon, D. H., Evans, D. J., and Almond, J. W. (1995). The 3'untranslated region of picornavirus RNA: features required for efficient genome replication. Journal of Virology 69(12), 7835-7844. Sáiz, J. C., Sobrino, F., and Dopazo, J. (1993). Molecular epidemiology of foot-and- mouth disease virus type O. Journal of General Virology 74, 2281-2281. Salt, J. (1993). The carrier state in foot and mouth disease—an immunological review. British Veterinary Journal 149(3), 207-223. Salt, J., Williams, L., Statham, R., and Barnett, P. (1995). Further studies on the rate of development of protection in cattle given emergency vaccination against FMD. Report, Session of the Research Group of the Standing Technical Committee of the European Commission for the Control of Foot-and-Mouth Disease and the Foot-and-Mouth Disease Sub-group of the Scientific Veterinary Committee of the Commission of the European Community, Modelling, 90-7. Sambrook, J., and Russell, D. W. (2001). 'Molecular cloning: a laboratory manual ' Cold spring harbor laboratory press Cold Spring Harbor, New York. Sangar, D., Rowlands, D., Harris, T., and Brown, F. (1977). Protein covalently linked to foot-and-mouth disease virus RNA. Santa Cruz, S., Roberts, A. G., Prior, D. A., Chapman, S., and Oparka, K. J. (1998). Cell-to-cell and phloem-mediated transport of potato virus X: the role of virions. The Plant Cell Online 10(4), 495-510. Sarnow, P. (1989). Role of 3'-end sequences in infectivity of poliovirus transcripts made in vitro. Journal of Virology 63(1), 467-470. Shieh, H. (1997). The FMD situation in Taiwan: short communication. Journal Chinese Society of Veterinary Science23, 395-402. Sit, T. L., Johnston, J. C., Ter Borg, M. G., Frison, E., McLean, M. A., and Rochon, D. (1995). Mutational analysis of the cucumber necrosis virus coat protein gene. Virology 206(1), 38-48. Sit, T. L., Leclerc, D., and Abou-Haidar, M. O. (1994). The Minimal 5′ Sequence for in Vitro Initiation of Papaya Mosaic Potexvirus Assembly. Virology 199(1), 238- 242. Thomson, G., Vosloo, W., and Bastos, A. (2003). Foot and mouth disease in wildlife. Virus research 91(1), 145-161. Usha R, Rohll JB, Spall VE, Shanks M, Maule AJ, Johnson JE, Lomonossoff GP(1993) Expression of an animal virus antigenic site on the surface of a plant virus particle. Virology, 197(1), 366-374. Vaewhongs, A. A., and Lommel, S. A. (1995). Virion formation is required for the long-distance movement of red clover necrotic mosaic virus in movement protein transgenic plants. Virology 212(2), 607-613. Vagenende, V., Yap, M. G., and Trout, B. L. (2009). Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry 48(46), 11084- 11096. Van Der Vossen, E. A., Neeleman, L., and Bol, J. F. (1994). Early and late functions of alfalfa mosaic virus coat protein can be mutated separately. Virology 202(2), 891-903. Viswanathan, S., Ratish, G., Reddy, G., and Suryanarayana, V. (1999). Comparative studies on immunoreactivity of truncated recombinant proteins of foot and mouth disease virus (FMDV) produced in E. coli and insect cells. Indian Journal of Experimental Biology 37, 536-540. Wang, C. Y., Chang, T. Y., Walfield, A. M., Ye, J., Shen, M., Chen, S. P., Li, M. C., Lin, Y. L., Jong, M. H., and Yang, P. C. (2002). Effective synthetic peptide vaccine for foot-and-mouth disease in swine. Vaccine 20(19), 2603-2610. Wang, J.H., Liang, C.M., Peng, J.M., Shieh, J.J., Jong, M.H., Lin, Y.L., Sieber, M., and Liang, S.M. (2003). Induction of immunity in swine by purified recombinant VP1 of foot-and-mouth disease virus. Vaccine 21(25), 3721-3729. Wei, N., Hacker, D. L., and Morris, T. J. (1992). Characterization of an internal element in turnip crinkle virus RNA involved in both coat protein binding and replication. Virology 190(1), 346-355. Weiss, B., Nitschko, H., Ghattas, I., Wright, R., and Schlesinger, S. (1989). Evidence for specificity in the encapsidation of Sindbis virus RNAs. Journal of Virology 63(12), 5310-5318. Wigdorovitz, A., Perez Filgueira, D., Robertson, N., Carrillo, C., Sadir, A., Morris, T., and Borca, M. (1999). Protection of mice against challenge with foot and mouth disease virus (FMDV) by immunization with foliar extracts from plants infected with recombinant tobacco mosaic virus expressing the FMDV structural protein VP1. Virology 264(1), 85-91. Wimmer, E. (1982). Genome-linked proteins of viruses. Cell 28(2), 199-201. Wu, L., Jiang, L., Zhou, Z., Fan, J., Zhang, Q., Zhu, H., Han, Q., and Xu, Z. (2003). Expression of foot-and-mouth disease virus epitopes in tobacco by a tobacco mosaic virus-based vector. Vaccine 21(27), 4390-4398. Wung, C.H., Hsu, Y.H., Liou, D.Y., Huang, W.C., Lin, N.S., and Chang, B.Y. (1999). Identification of the RNA-binding sites of the triple gene block protein 1 of bamboo mosaic potexvirus. Journal of General Virology 80(5), 1119- 1126. Yang, C.C., Liu, J.S., Lin, C.P., and Lin, N.S. (1997). Nucleotide sequence and phylogenetic analysis of a bamboo mosaic potexvirus isolate from common bamboo (Bambusa vulgaris McClure). Botanical Bulletin of Academia Sinica 38. Yang, C.D., Liao, J.T., Lai, C.Y., Jong, M.H., Liang, C.M., Lin, Y.L., Lin, N.S., Hsu, Y.H., and Liang, S.M. (2007). Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes. BMC Biotechnology 7(1), 62. Zhang, H., Todderud, E., and Stubbs, G. (1993). Crystallization and preliminary X-ray analysis of papaya mosaic virus coat protein. Journal of Molecular Biology 234(3), 885-887. Zhao, X., Fox, J. M., Olson, N. H., Baker, T. S., and Young, M. J. (1995). In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. Virology 207(2), 486-494. Zimmern, D., and Butler, P. (1977). The isolation of tobacco mosaic virus RNA fragments containing the origin for viral assembly. Cell 11(3), 455-462.
摘要: 口蹄疫(Foot-and-mouth disease, FMD)是一種急性高度傳染性疾病,主要感染偶蹄類動物,其病徵為口、足等部位皮膚出現水泡,造成部分動物死亡,其影響畜牧產業之發展甚鉅,長期以來亦造成世界各地嚴重的經濟損失。目前市面上的口蹄疫疫苗為去活化病毒疫苗,但由於去活化過程中會有去活不完全之風險,故開發安全、有效及便宜的口蹄疫次單位疫苗是刻不容緩。由過去研究得知,口蹄疫病毒鞘蛋白VP1為病毒主要的抗原決定位,乃受病毒感染時與生物體內免疫細胞結合之部位,並能引發生物體產生免疫反應。大腸桿菌是目前使用最廣泛的表現蛋白質系統之一,具有生長快速、操作容易、產量高及低成本的優點。先前以Escherichia coli表現wild type Bamboo mosaic virus (BaMV) coat protein,純化後透析至10 mM MES緩衝溶液中,發現可以形成長度約500 nm大小之類病毒顆粒。本實驗中,選擇以E. coli為表現系統表達N端35個胺基酸缺失的竹嵌紋病毒外鞘蛋白,並在其N端融合兩段口蹄疫病毒VP1128-164之抗原決定基,分別為97及Manisa亞型抗原,命名為BVP1 97 Nd35mCP及BVP1 Manisa Nd35mCP。經低溫誘導表現發現融合蛋白為水溶性,並分別用Phenyl、DEAE、S200 column純化,觀察在不同種類的緩衝溶液、濃度、pH值、離子強度及溫度的條件下能否自我組裝形成缺少核酸之類病毒顆粒(VLPs),利用電子顯微鏡的觀察可以發現許多的類病毒顆粒,與從植物純化而來之VP1 Nd35mCP的絲狀病毒相比,VP1 97 mCP及VP1 Manisa mCP皆形成長度較短的桿狀類病毒顆粒,其平均大小約為100 nm~200 nm左右。此類病毒顆粒是否可作為一個安全性高、免疫效果強之次單位疫苗,進而取代傳統型口蹄疫疫苗,使豬隻免於口蹄疫病毒的威脅,仍需在未來進一步測試。
Foot-and-mouth disease virus (FMDV) is the causative agent of the acute and highly contagious foot and mouth disease (FMD). The symptoms are blisters on the skin of foot and mouth. FMD affects the developing of livestock industry significantly and causes the economic loss around the world. Conventional FMD vaccines are based on the chemically inactivated virus, which induce neutralizing antibodies, control disease and protect from FMD infection. However, the disadvantage of incompletely inactivated vaccine would contain live viral residues causing outbreak of disease. Hence, developing a safe, valid and inexpensive FMD subunit vaccine is urgent. FMDV VP1 is the major epitope, which can be recognized by immune system and elicit the immunogenic response while infected with virus. Escherichia coli is one of the most extensive protein expression system for its advantages of fast growth, easily manipulated, high protein yields and low cost. In the previous study, we found that purified wild type Bamboo mosaic virus (BaMV) coat protein (CP) from E. coli could self-assembled into virus-like particles (VLPs) in 10 mM 2-(N-morpholino) ethanesulfonic acid buffer (MES buffer, pH 6.0). The VLPs are about 500nm in length. In this study, we generated pET expression plasmids designated as pBVP1 97 Nd35mCP and pBVP1 Manisa Nd35mCP by replacing 35 amino acids of BaMV CP at N-terminal with 37 amino acids of VP1 epitopes of FMDV 97 or Manisa subtype. The recombinant fusion proteins expressed in E. coli produced in high-yield and in a soluble form. The recombinant proteins were purified by Phenyl、DEAE、S200 column consecutively. In order to test whether in vitro expressed BVP1 could self-assemble into VLPs in the absence of BaMV genome, the recombinant proteins were incubated in different pH, ionic strength buffer conditions and in the different temperature. The TEM results revealed that BVP1 formed into VLPs. Compare to the filamentous VP1 Nd35mCP purified from plants, both VP1 97 mCP and VP1 Manisa mCP formed about 100 nm~200 nm rod-shaped VLP. The mentioning VLPs as a safe and enhanced immunogenic subunit vaccine to protect pigs from FMD will be tested in the future.
文章公開時間: 2017-07-01
Appears in Collections:生物科技學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.