請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/90115
標題: The Study of Palygorskite on the Characteristic and Application
坡縷石之特性及應用研究
作者: Hong-Jie Huang
黃泓潔
關鍵字: clay minerals
palygorskite
biological agent
黏土礦物
坡縷石
菌劑
引用: 王敏昭、陳鴻基。2003。紅外線分析。實用儀器分析。合記圖書出版社。 王文毅、陳鴻基、曾志明。2012。以黏粒修飾電極法對鞏梨子之分析與反應研究。國立中興大學土壤環境科學所碩士論文。 何任于、陳鴻基、曾志明。2011。以黏粒修飾電極法對甲基藍電化學特性之研究。國立中興大學土壤環境科學所碩士論文。 林文川。2004。台灣金線連的研究近況。國際藥用植物產業發展研討會專刊。231-238。 林季融、陳鴻基、曾志明。2011。黏土礦物對土壤細菌生長影響之研究。台灣農學會報 12:164-185。 林益昇。2009。病害環。普通植物病理學講義。pp. 3。 范揚廣、左克華、魏恆巍、金悅祖、蔡清恩。2011。鐮孢菌屬所產黴菌毒素之毒害。飼料黴菌毒素防治手冊。行政院農業委員會。pp.15-25。 陳榮五、黃勝忠、許謙信、陳彥睿。1996。花卉組織培養實用技術手冊。臺灣省臺中區農業改良場。 張士成、蔣軍華。1997。凹凸棒石的選礦深加工與新產品開發研究。礦產保護與利用 5:27-34。 曾绣丹、陳鴻基、曾志明。2011。巴拉刈對苯二酚在黏粒修飾電極上的電化學反應影響。國立中興大學土壤環境科學所碩士論文。 榮興民、黃巧雲、陳雯莉、梁巍。2008。土壤礦物與微生物相互作用的機理及其環境效應。生態學報 28:376-387。 劉學周、藺海明、王蒂、張經禎、趙亞麗、趙登興。2009。施用坡縷石對黃綿土中尿素氮的揮發和淋溶損失的影響。應用生態學報 20:823-828。 鄭世堃、陳鴻基、曾志明。2007。以電化學方法探討烷基銨插層膨潤石類之表面電荷特性。中華農學會報 8:336-354。 魏榮道、崔嶠。2005。甘肅臨澤凹凸棒石粘土礦開發應用研究。甘肅科學學報 3:43-45。 蕭翌柱、何婉綸。2012。台灣金線連之天麻素萃取方法。台灣農業研究 61:259-268。 蕭翌柱、蔡新聲。2003。台灣金線連風華再現。科學發展 364:16-21。 Alvarex, A. J., M. Khanna, G. A. Toranzons, and G. Stotzky. 1988.Amplification of DNA bound on clay minerals. Mol. Ecol. 7: 775-778. Ams, D. A., J. B. Fein, H. Dong and P. A. Maurice. 2004. Experimental measurements of the adsorption of Bacillus subtilis and Pseudomonas mendocina onto Fe-oxyhydroxide-coated and uncoated quartz grains. Geomicrobiol. J. 21: 511-519. April, R., and D. Keller. 1990. Mineralogy of the rhizosphere in forest soils of the eastern United States. Biogeochemistry 9: 1– 18. Bakhshandeh, S., F. Khormali, E. Dordipour, M. Olamaei, and M. Kehl. 2011. Comparing the weathering of soil and sedimentary palygorskite in the rhizosphere zone. Appl. Clay Sci. 54: 235–241. Bingaman, B.R., and N.E. Christians. 1995. Greenhouse screening of corn gluten meal as a natural control product for broadleaf and grass weeds. HortSci. 30: 1256-1259. Bondietti, E., J. P. Martin, and K. Haider. 1971. Influence of nitrogen source and clay on growth and phenolic polymer production by Stachybortrys species, Hendersonula toruloidea, and Aspergillus sydowii. Soil Sci. Soc. Am. Proc. 35: 917-922. Brabich, H., and G. Stotzky. 1977a. Reductions in the toxicity of cadmium to microorganism by clay minerals. Appl. Environ. Microbiol. 33: 696-705. Brabich, H., and G. Stotzky. 1977b. Effect of cadmium of fungi and on interactions between fungi and bacteria in soil: influence of clay minerals and pH. Appl. Environ. Microbiol. 33: 1059-1066. Brabich, H., and G. Stotzky. 1978c. Effect of cadmium on the biota: influence of environmental factors. Adv. Sppl. Microbiol. 23: 55-117. Brabich, H., and G. Stotzky. 1983b. Toxicity of nickel to microbes: environmental aspects. Adv. Sppl. Microbiol. 29: 165-195. Calamai, L., L. Lozzi, G. Stotzky, P. Fusi, and G. Ristori. 2000. Interaction of catalase in montmorillonite homonionic to cations with different hydrophobicity: effect on enzyme activity and microbial utilization. Soil Biol. Biochem. 32: 815-823. Chatzifotis, S., M. V. Arias, I. E. Papadakis, and P. Divanach. 2009. Evaluation of feed stimulants in diets for sea bream (Sparus aurata). Isr. J. Aquacult. Bamid. 61: 315-321. Chenu, C. 1993. Clay- or sand-polysaccharides associations as models for the interface between microorganisms and soil: water-related properties and microstructure. Geoderma. 56: 143-156. Chenu, C. and G. Stotzky. 2002. Interactions between microorganisms and soil particles : A overview. In'Interactions Between Soil Particles and Microorganisms', eds. P. M. Huang, J. M. Bollag and N. Senesi, pp. 3-40. New York: John Wiley & Sons, Inc. Chiu, N. Y. and K. H. Chang. 1995. Chin-hsin-lien. p.282–283. in: The Illustrated Medicinal Plants of Taiwan (4). (Chiu, N. Y. and K. H. Chang, eds.) Southern Materials Center Inc. Taipei. Claus, H., and Z. Filip. 1990. Effects of clays and other solids on the activity of phenoloxidases produced by some fungi and actinomycetes. Soil Biol. BioChem. 22: 483-488. Corma, A., A. Mifsud, and E. Sanz. 1987. Influence of the chemical composition and textural charac-teristics of palygorskite on the acid leaching of octahedral cations. Clay Miner. 22: 225–232. Corma, A., A. Mifsud, and E. Sanz. 1990. Kinetics of the acid leaching of palygorskite: influence ofthe octahedral sheet composition. Clay Miner. 25: 197–205. Courvoisier, E. and S. Dukan. 2009. Improvement of Escherichia coli growth by kaolinite. Appl. Clay Sci. 44: 67-70. Daseman, T., and G. Stotzky. 1982. Adsorption and binding of amino acids on homoionic montmorillonite and Kaolinite . Soil Biol. Biochem. 14: 447-456. Daseman, T., and G. Stotzky. 1984. Adsorption and binding of peptides on homoionic montmorillonite and kaolinite. Soil Biochem. 16: 51-55. Drever, J. I. 1994. The effect of land plants on weathering rates of silicate minerals. Geochimica et Cosmochimica Acta 58: 2325 –2332. Du, X. M., N. Y. Sun, T. Tamura, A. Mohri, M. Sugiura, T. Yoshizawa, N. Irino, J. Hayashi, and Y. Shoyama. 2001. Higher yield isolation of kinsenoside in Anoectochilus and its antihyperliposis effect. Biol. Pharm Bull. 24: 65-69. Du, X. M., T. Yoshizawa, and Y. Shoyama. 1998. Butanoic acid glucoside composition of whole body and in vitro plantlets of Anoectochilus formosanus. Phytochemistry 49: 1925–1928. England, L. S., H. Lee, and J. T. Trevors. 1993. Bacterial survival in soil: effect of clay and protozoa. Soil Biochem. 25: 525-531. England, L. S., H. Lee and J. T. Trevors. 1993. Bacterial survival in soil: effect of clays and protozoa. Soil Biol. Biochem. 25: 525-531. Engle, J.P. 1994. OTC advisory: antidiarrheal products. Am. Drug. 8: 48–50. Farmer, V. C. 1978. Water on particle surfaces. P. 405-408. In D.J. Greenland and M. H. B. Hayes (ed.) The chemistry of soil constituents. Marcel Dekker, New York. Filip, Z., K. Haider, and J. P. Martin. 1972a. Infuence of clay minerals on growth and metabolic activity of Epicoccum nigrum and Stachybotrys chartarum. Soil Biol. Biochem. 4: 135-145. Fomina, M. and G. M. Gadd. 2002. Influence of clay minerals on the morphology of fungal pellets. Mycol. Res. 106: 107-117. Galan, E. 1996. Properties and applications of palygorskite-sepiolite clays. Clay Miners. 31: 443-453. Granquistan, W. T., and D. R. C. Amero. 1948. Low temperature nitrogen adsorption studies on attapulgite (Floridin). J. Am. Chem. Soc. 70: 3265–3270. Greenland, D. J., and C. J. B. Mott. 1978. Surfaces of soil particals. P. 321-354. In D. J. Greenland and M. H. B. Hayes (ed.) The chemistry of soil constituents. John Wiley and Sons, New York. Guven, N., J.P.E. Caillere, and J.J. Fripiat. 1992. The coordination of aluminum ions in the palygorskite structure. Clays Clay Miner. 40: 457-461. Harter, R. D. 1977. Reactions of minerals with organic compounds in the soil. P. 709-739. In J.B. Dixon and S. B. Reed (ed.) Minerals in soil environments. Soil Sciences Society of America, Madison, WI. Harter, R. D., and G. Stotzky. 1971. Formation of clay-protein complexes. Soil Sci. Soc. Am. Proc. 35: 383-389. Harter, R. D., and G. Stotzky. 1973. X-ray diffraction, electron microscopy electrophoretic mobility, and pH of some stable smectite-protein complexes. Soil Sci. Soc. Am. Proc. 37: 116-123. Haskaa, G., 1981. Activity of bacteriolytic enzymes adsorbed to clays. Microb. Ecol. 7: 331-341. Hayes, M. H. B., and R. S. Swift. 1978. The chemistry of soil organic colloids. P. 179-320. In D. J. Greenland and M. H. B. Hayes (ed.) The chemistry of soil constituents. Marcel Dekker, New York. Heijnen, C. E., J. Postma and J. A. Van Veen. 1990. The significance of artificially formed and originally present protective microniches for the survival of introduced bacteria in soil. Problemy Pochvovedeniye 3: 88-93. Heijnen, C. E., J. Postma, and J. A. Van Veen. 1990. The significance of artificially formed and originally present protective microniches for the survival of introduced bacteria in soil. Problemy Pochvovedeniye 3: 88-93. Hinsinger, P., B. Jaillard, and J. Dufey. 1992. Rapid weathering of a trioctahedral mica by the roots of ryegrass. Soil Sci. Soc. of Amer. J. 56: 977 –982. Huang, J. W., S. K. Sun, H. Y. Maa, and J. H. Chen. 1992. Studies of the genus Fusarium of Taiwan. (III). Trans. Mycol. Soc. R.O.C. 7: 1-17. Hung, D. F. 2000. The Mechanism Study of Hepato-protective Activity of Boehmeria Species and Anoectochilus Species. Master Thesis, Graduate Institute of Natural Products, Kaohsiung Medical University. Kaohsiung. Ito, A., R. Kasai, K. Yamasaki, and H. Sugimoto. 1993. Aliphatic and aromatic glucosides from Anoectochilus koshunensis. Phytochemistry 33 :1133–1137. Jaynes, W.F., and J.M. Bigham. 1987. Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites. Clays Clay Miner. 35: 440-448. Kan, W. S. 1979. Taiwan Chin-hsin-lien. p.646–647. in: Manual of Medicinal Plants. (Kan, W. S., ed.) National Research Institute of Chinese Medicine. Taipei. Kan, W. S. 1986. Anoectochilus formosanus Hayata. p.647. in: Pharmaceutical Botany. 7th ed. (Kan, W. S., ed.) National Research Institute of Chinese Medicine. Taipei. Khademi, H., and J. M. Arocena. 2008. Kaolinite formation from palygorskite and sepiolite in rhizosphere soils. Clays Clay Miner. 56: 429-436. Khanna, M., and G. Stotzky. 1992. Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of Dnase on the transforming ability of bound DNA. Appl. Environ. Microbiol. 58: 1930-1939. Koskella, J., and G. Stotzky. 1997. Microbial utilization of free and clay-bound insecticidal toxins from Bacillus thuringiensis and their retention of insecticieal activity after incubation with microbes. Appl. Environ. Microbiol. 63: 3561-3568. Kumar, K., C. J. Rosen, and S. C. Gupta. 2002. Kinetics of nitrogen mineralization in soils amended with suger beet processing by-products. Commnu. Soil Sci. Plant Anal. 33: 3635-3651. Lavie, S. and G. Stotzky. 1986. Adhesion of the clay minerals montmorillonite, kaolinite and attapulgite reduce of Histoplasma capsulatum. Appl. Environ. Microbiol. 51: 65-73. Leou, C. S. 2000. Anoectochilus blume. p.746–749. in: Flora of Taiwan (5). 2nd ed. (Editorial Committee of the Flora of Taiwan, ed.) Department of Botany, National Taiwan University. Taipei. Lipson, S. M., and G. Stotzky. 1983. Adsorptionof reovirus to clay minerals:effects of cation exchange capacity, Cation saturation, and surface area. Appl. Environ. Microbiol. 46: 673-682. Liu, D.L.-Y., N.E. Christians, and J.T. Garbutt. 1994. Herbicidal activity of hydrolyzed corn gluten meal on three grass species under controlled environments. J. Plant Growth Regul. 13: 221-226. Lucas, Y. 2001. The role of plants in controlling rates and products of weathering: importance of biological pumping. Annual Review of Earth and Planetary Sci. 29: 135-163. Madejova, J., and P. Komadel. 2001. Baseline studies of the Clay Minerals Society source clays: infrared spectroscopy. Clays Clay Miner. 49: 410–432. Malla, P.B. 2002. Vermiculite. In 'Soil Mineralogy with Environmental Applications. SSSA Book Series, no. 7', eds J.B. Dixon and D.G. Schulze, pp. 501-529. Madison, WI, USA: Soil Science Society of America, Inc. Marshall, K. C. 1968. Interaction between colloidal montmorillonite and cells of Rhizobium species with different ionogenic surfaces. Biochem. Biophys. Acta. 156: 179-186. Martindale, W. 1982. The Extra Pharmacopoeia, 28th Edition. Pharmaco logical Society of Great Britain, Pharmaceutical Press, London, 2025p . McMormick, R. W., and D. C. Wolf. 1979a. Effect of montmorillonite and trace elements on the growth of Penicillium frequentans: II. Nitrate nitrogen source. Soil Sci. Soc. Am. J. 43: 1120-1124. Mendelovici, E., and D. Portillo. 1976. Organic derivatives of attapulgite : Infrared spectroscopy and X-ray diffraction studies. Clays Clay Miner. 24: 177–182. Mortland, M. M. 1970. Clay-organic complexes and interactions. Adv. Agron. 22: 75-117. Murray, H.H. 1999. Applied clay mineralogy today and tomorrow. Clay Miners. 34: 39-49. Murray, H.H. 2000. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl. Clay Sci. 17: 207-221. Neaman, A., Singer, A. 2000. Kinetics of hydrolysis of some palygorskite-containing soil clays in dilute salt solutions. Clays Clay Miner. 48: 708-712. Nelson, P. E. 1991. History of Fusarium systematics. Phytopathology 81: 1045-1048. Paquet, H., and G. Millot.1973. Geochemical evolution of clay minerals in the weathered products in soils of Mediterranean climate. In: Serratosa, J.M. (Ed.), Proceedings of the 4th International Clay Conference, Madrid, Spain, 1972. Consejo Superior de Investigaciones Cientificas, Madrid, pp. 199–206. Perrault, G., J. Harvey, and R. Pertsowsky. 1975. La Yofortierite, un noveau silicate de manganesede St. Hilaire, P.Q. Can. Miner. 13: 68–74. Perrin-Sarazin, F., M. T. Ton-That, M. N. Bureau, and J. Denault. 2005. Micro- and nano- structure in polypropylene/clay nanocomposites. Polymer. 46: 11624–11634. Philen, O. D., Jr., S. B. Weed, and J. B. Weber. 1971. Surface charge characterization of layer silicates by competitive adsorption of two organic divalent cations. Clays Clay Miner. 19: 295-302. Poly, F., C. Chinu, P. Simonet, J. Rouiller, and L. Jocteur Monrozier. 2000. Differences between linear chromosomal and supercoiled plasmid DNA in their mechanisms and extent of adsorption on clay minerals. Langmuir 16: 1233-1238. Post, J.E., and P.J. Heaney. 2008. Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of palygorskite. Am. Miner. 93: 667–675. Post, J.E., D.L. Bish, and P.J. Heaney. 2007. Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of sepiolite. Am. Miner. 92: 91–97. Rosenzweig, W. D., and G. Stotzky. 1979. Influence of environmental factors on antagonism of fungi by bacteria in soil: clay minerals and pH. Appl. Environ. Microbiol. 38: 1120-1126. Rosenzweig, W. D., and G. Stotzky. 1980a. Influence of environmental factors on antagonism of fungi by bacteria in soil: nutrient levels. Appl. Environ. Microbiol. 39: 354-360. Santaren, J., and A. Alvarez. 1994. Assessment of the health effects of mineral dusts. The sepiolite case. Ind. Miner. 1–12. Schulze, D.G. 2002. An introduction to soil mineralogy. In 'Soil Mineralogy with Environmental Applications. SSSA Book Series, no. 7', eds. J.B. Dixon and D.G. Schulze, pp. 1-35. Madison, WI, USA: Soil Science Society of America, Inc. Semenov, E.I. 1969. Mineralogy of the Ilimaussaq Alkaline Massif, Southern Greenland. Inst. Mineral. Geokhim. Krydtsllokhim. Redk Elementov, Izdat. Nauka, Moscow, pp. 164. (in Russian). Shariatmadari, H., and A. R. Mermut. 1999. Magnesium- and silicon-induced phosphate desorption in smectite-, palygorskite-, and sepiolite–calcite systems. Soil Sci. Soc. Am. J. 63: 1167–1173. Shih, C. C, Y.W. Wu, C. C. Hsieh, and W. C. Lin. 2004. Effect of Anoectochilus formosanus on fibrosis and regeneration of the liver in rat. Clin. Exp. Pharmacol. Physiol. Shih, C. C., Y. W. Wu, W. C. Lin. 2004a. Aqueous extract of Anoectochilus formosanus attenuate hepatic fibrosis induced by carbon tetrachloride. Phytomedicine. Shih, C. C., Y. W. Wu, and W. C. Lin. 2003. Scavenging of reactive oxygen species and inhibition of the oxidation of low density lipoprotein by the aqueous extraction of Anoectochilus formosanus. Am. J. Chin. Med. 31: 25-36. Singer, A. 2002. Palygorskite and sepiolite. In 'Soil Mineralogy with Environmental Applications. SSSA Book Series, no. 7', eds J.B. Dixon and D.G. Schulze, pp. 555-583. Madison, WI, USA: Soil Science Society of America, Inc. Singer, A. 2002. Palygorskite and Sepiolite. In: Dixon, J.B., Schulze, D.G. (Eds.), Soil Mineral-ogy with Environmental Applications. SSSA Book Series, vol. 7. Soil Science Society of America, Madison, WI, pp. 555–583. Singer, A. 2002. Palygorskite and sepiolite. In' Soil Mineralogy with Environmental Applications ' ed. J.B. Dixon and D.G. Schulze, pp. 555-583. Madison: Soil Sci. Soc. Amer., Inc. Singer, A., and K. Norrish. 1974. Pedogenic palygorskite occurrence in Australia. Am. Mineral. 59: 508–517. Solomon, D.H., B.C. Loft, and J.D. Swift. 1968. Reactions catalyzed by minerals. IV. Themechanism of the benzidine blue reaction of silicate minerals. Clay Miner. 7: 389-397. Stevenson, F. J. 1982. Humus chemistry. John Wiley and Sons, New York. Stotzky, G. 1974. Activity, ecology and population dynamics of microorganisms in soil. In'Microbial Ecology', eds. A. I. Laskin and H. Lechevalier, pp. 57-135. Cleveland: Chemical Rubber Co. Stotzky, G. 1974. Activity, ecology, and population dynamics of microorganisms in soil. P. 57-135. In A. I. Laskin and H. Lechevalier (ed.) Microbial ecology. Chemical Rubber Co., Cleveland. Stotzky, G. 1986. Influence of soil mineral colloids on metabolic processes, growth, adhesion and ecology of microbes and viruses. In'Interactions of Soil Minerals with Natural Organics and Microbes', eds. P. M. Huang and M. Schnitzer, pp. 305-428. Madison: Soil Sci. Soc. Amer., Inc. Stotzky, G., and L. T. Rem. 1966. Influence of clay minerals on microorganism: I. Montmorillonite and Kaolinite on bacteria. Can. J. Microbiol. 12: 547-563. Suarez, M., and E. Garcia-Romero. 2006. FTIR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet. Appl. Clay Sci. 31: 154-163. Steve J. C., and David L. B. 2001. Baseline studies of the clay minerals society source clays: powder X-ray diffraction analyses. Clays Clay Miner. 49: 398-409. Theng, B. K. G. 1974. The chemistry of clay-organic reactions. John Wiley and Sons, New York. Theng, B. K. G. 1979. Formation and properties of clay-polymer complexes. Elsevier Science Publishing Co., New York. Theng, B. K. G. and V. A. Orchard. 1995. Interactions of clays with microorganisms and bacterial survival in soil: A physicochemical perspective. In'Environmental Impact of Soil Component Interactions', eds. P. M. Huang, J. Berthelin, J. M. Bollag, W. B. McGill and A. L. Page, pp. 123-143. London: Lewis Publishers. Theng, B.K.G. 1971. Mechanisms of formation of colored clay-organic complexes. A review. Clays Clay Miner. 19: 383-390. Tzeng, S. H. 2005. Tissue Culture of Anoectochilus formosanus Hayata and Quantitative Analysis of Gastrodin. Master Thesis, Department of Life Sciences, National Chung-Hsing University. Taichung. Vidal. 1996. Dictionnaire Vidal, 72nd Ed., Paris, Editions du Vidal, pp. 7, 673, 1041. Wang, S. Y., Y. H. Kuo, H. N. Chang, H. S. Tsay, K. F. Lin, N. S. Yang, and L. F. Shyur. 2002. Profiling and characterization of antioxidant activities in Anoectochilus formosanus Hayata. J. Agric. Food Chem. 50: 1859–1865. Weaver, C.E., and L. D. Pollard. 1973. The Chemistry of Clay Minerals. Developments in Sedimen-tology, vol. 15. Elsevier, Amsterdam, Netherlands, pp. 213. White, R.E. 1987. Introduction to the principles and practices of soil science. 2nd ed. Massachusetts, USA: Blackwell Amer. Pub. Inc. pp. 11-32.
摘要: Clay minerals were important mineral materials that widely used in medicine, geology, agriculture, construction, engineering and process industries, and montmorillonite and kaolinite were mostly used, and less used for palygorskite belonging to fibrous layer silicates. We investigated the layer crystal structure and functional groups of two commercial palygorskites, america palygorskite and spain sepiolite by XRD and FTIR. Furthermore, we produced biological fertilizer using the mixture of commercial palygorskite and actinomycetes to apply the pot culture of leaf vegetables (bok choy and chinese white cabbage) and high economic crop (Anoectochilus formosanus Hayata). The results indicated that diffractive peaks of two commercial palygorskite were 10.57 A, 5.44 A, 4.49 A and 3.64 A which was similar to america palygorskite's diffractive peaks (10.51 A, 5.44 A, 4.46 A and 3.57 A). However, the diffractive peaks of spain sepiolite were 12.08 A, 6.71 A, 5.00 A and 3.73 A that were obviously different from three palygorskites. Palygorskite and sepiolite were fibrous layer silicates, but the octahedra numbers of octahedral sheet of palygorskite was different from sepiolitet. The results also showed two commercial palygorskite had higher purity because the main diffractive peak (10.51 A) was same as PFl-1 (10.5 A) (The Clay Minerals Society's source clay), and the diffractive peak (10.51 A) was (110) crystal face of palygorskite. Pattern of FTIR method also showed same results as XRD method. Furthermore, commercial palygorskite had much lower cost than PFl-1 and america palygorskite. In pot experiments, the fresh weight of leaf vegetable increased with biological fertilizer treatments. Bok choy with Pa2-CGM-AM1S treatment and chinese white cabbage with Pa2-CGM-AM1S treatment had highest fresh weight. Nevertheless, the fresh weight of high economic crop (Anoectochilus formosanus Hayata) had no significant difference with or without mineral materials treatments. In future, cheaper commercial palygorskite had great potential to develop biological fertilizers of bacterial powder drug.
黏土礦物是常被廣泛應用於醫藥、地質、農業、建築、工程與加工業的重要礦物資材,其中多半以蒙特石和高嶺石居多,而屬於具有絲狀構造之層狀矽酸鹽礦物的坡縷石使用較少。本試驗研究利用 X射線繞射光譜法(XRD)及傅立葉紅外線光譜法 (FTIR) 來鑑定分析兩種市售坡縷石、美國生產坡縷石與西班牙生產海泡石等的層狀結晶構造與官能基之特性。以兩種市售坡縷石與兩種放線菌製成菌劑並施用於葉菜類作物 (青江菜與小白菜) 與高經濟作物 (金線連) 之盆栽進行試驗,評估礦物資材之菌劑施用上的功效。試驗結果指出,市售兩種坡縷石鉀飽和室溫處理之 XRD 繞射峰為 10.57 A 、 5.44 A 、 4.49 A 與 3.64 A ,其與美國生產坡縷石 XRD 繞射峰 10.51 A 、 5.44 A 、 4.46 A 與 3.57 A 相近,而西班牙生產海泡石的 XRD繞射峰為 12.08 A 、 6.71 A 、 5.00 A 與 3.73 A ,明顯與前面三種坡縷石的繞射峰不同。坡縷石與海泡石雖同屬於絲狀層狀矽酸鹽礦物,但兩者在黏土礦物單晶八面體層中的八面體個數不同。兩種市售坡縷石XRD的主要繞射峰為 10.57 A 與黏土礦物學會的標準黏土礦物PFl-1的主要繞射峰 10.5 A 相近,其為坡縷石的 (110) 晶面,顯示市售坡縷石的純度很高。由 FTIR 的圖譜也證明與 XRD 鑑定的結果相同,且市售坡縷石比黏土礦物學會的 PFl-1 及美國生產坡縷石便宜。以其製成菌劑施用於葉菜類盆栽試驗得知,添加菌劑處理之葉菜類均有增加產量的效果,其中青江菜以 Pa2-CGM-AM1S 處理產量最高,而小白菜則以 Pa2-CGM-AM1S 處理產量最高。然而,在高經濟作物 (金線連) 鮮重產量上較無明顯增產,但以較便宜市售坡縷石製成的菌劑值得作為未來菌劑劑型肥料之開發。
URI: http://hdl.handle.net/11455/90115
文章公開時間: 2016-12-09
顯示於類別:土壤環境科學系

文件中的檔案:
檔案 大小格式 
nchu-102-7100039003-1.pdf2.76 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。