請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/90125
標題: Electrochemical characterization and application of indigenous exoelectrogenic bacteria
本土分離微生物之電化學特性及應用研究
作者: Hong-Wei Pi
皮宏偉
關鍵字: Electrochemically active bacteria
Microbial fuel cell
Screen-Printed Carbon Electrodes
電化學活性細菌
微生物燃料電池
網版印刷碳電極
引用: 沈佛亭。2006。Gordonia菌屬放線菌之分子偵測、分類及鑑定。國立中興大學土壤環境科學系博士論文。 林詩耀。2007。重油降解細菌之表現型及基因型特性研究。國立中興大學土壤環境科學系碩士論文。 高薏盈。2014。兼性少養分營細菌之多樣性、生理生化及植物生長促進特性研究。國立中興大學土壤環境科學系碩士論文。 連加雯。2006。網版印刷碳電極的活化及其電分析化學的應用。國立中興大學化學系碩士論文。 黃郁瑄。2014。兼性少養分營細菌之分離、營養及植物生長特性研究。國立中興大學土壤環境科學系碩士論文。 劉俊良。2009。可攜式酵母菌微生物燃料電池系統與發電特性研究。國立中興大學精密工程研究所碩士論文。 劉祐誠。2010。絕對厭氧異化性鐵還原微生物新種特性之研究。國立中興大學土壤環境科學系碩士論文。 Annapurna, B., S. Meenakshi, S.D. Bhat and S. Seshadri. 2013. Microbial extracellular polysaccharide-based membrane in polymer electrolyte fuel cells. Chem. Eng. J. 231: 373-379. Biffinger, J.C., J.N. Byrd, B.L. Dudley and B.R. Ringeisen. 2008. Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens. Bioelectron. 23: 820-826. Bond, D.R. and D.R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548-1555. Bond, D.R. and D.R. Lovley. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71: 2186-2189. Bond, D.R., D.E. Holmes, L.M. Tender and D.R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 295:483-485. Borole, A., H. O'Neill, C. Tsouris and S. Cesar. 2008. A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum. Biotechnol. Lett. 30: 1367-1372. Caccavo, F., D.J. Lonergan, D.R. Lovley, M. Davis, J.F. Stolz and M.J. McInerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60: 3752-3759. Carmona-Martínez, A.A., F. Harnisch, U. Kuhlicke, T.R. Neu and U. Schröder. 2013. Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential. Bioelectrochemistry. 93: 23-29. Chang, I. S., H. Moon, O. Bretschger, J. K. Jang, H. I. Park, K.H. Nealson and B. H. Kim. 2006. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 16:163-177 . Chang, J.L., C.H. Lien, P.S. Vijayakumar, P.H. Hsieh and J.M. Zen. 2012. Electrochemical regulation of microbial growth on disposable screen printed carbon electrodes. Electrochim. Acta. 82: 103-108. Chaudhuri, S.K. and D.R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232. Chen, J.-J., W. Chen, H. He, D.-B. Li, W.-W. Li and L. Xiong. 2013. Manipulation of microbial extracellular electron transfer by changing molecular structure of phenazine-typeredox mediators. environ. Sci. Technol. 47: 1033-1039. Choi, J. and Y. Liu. 2014. Power generation and oil sands process-affected water treatment in microbial fuel cells. Bioresour. Technol. 169: 581-587. Choi, Y., J. Song, S. Jung, and S. Kim. 2001. Optimization of the performance of microbial fuel cells containing alkalophilic Bacillus sp. J. Microbiol. Biotechnol. 11:863-869. Choo, Y.F. 2006. Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate. J. Microbiol. Biotechnol. 16: 1481-1484. Debajit, B., M. Sejal and R.N.S. Yadav. 2013. Construction of double chambered microbial fuel cell (MFC) using household materials and Bacillus megaterium isolate from tea garden soil. JMBFS. 3: 84-86. Duran, R. 2010. Marinobacter. In: K. Timmis, editor Handbook of Hydrocarbon and Lipid Microbiology. Springer Berlin Heidelberg. p. 1725-1735. Faimali, M., E. Chelossi, G. Pavanello, A. Benedetti, I. Vandecandelaere, P. De Vos, P. Vandamme, and A. Mollica. 2010. Electrochemical activity and bacterial diversity of natural marine biofilm in laboratory closed-systems. Bioelectrochemistry. 78:30-38. Fedorovich, V., M. Knighton, E. Pagaling, F.B. Ward, A. Free, and I. Goryanin. 2009. Novel Electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell. Appl. Environ. Microbiol. 75:7326-7334. Finneran, K.T., C.V. Johnsen and D.R. Lovley. 2003. Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int. J. Syst. Evol. Microbiol. 53: 669-673. Gomelsky, M. and S. Kaplan. 1996. The Rhodobacter sphaeroides 2.4.1 rho gene: expression and genetic analysis of structure and function. J. Bacteriol. 178: 1946-1954. Gumaelius, L., G. Magnusson, B. Pettersson and G. Dalhammar. 2001. Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 51: 999-1006. Ha, P.T., T.K. Lee, B.E. Rittmann, J. Park and I.S. Chang. 2012. Treatment of alcohol distillery wastewater using a bacteroidetes-dominant thermophilic microbial fuel cell. Environ. Sci. Technol. 46: 3022-3030. Hamelers, B., R. Rozendal, U. Schröder, J. Keller, S. Freguia and P. Aelterman. 2006. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40: 5181-5192. Hassan, S.H.A., S.M.F. Gad El-Rab, M. Rahimnejad, M. Ghasemi, J.-H. Joo and Y. Sik-Ok. 2014. Electricity generation from rice straw using a microbial fuel cell. Int. J. Hydrog. Energy. 39: 9490-9496. Holmes, D.E., D.R. Bond, and D.R. Lovley. 2004. Electron transfer by desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70:1234-1237. Holmes, D.E., J.S. Nicoll, D.R. Bond, and D.R. Lovley. 2009. Potential role of a novel psychrotolerant member of the family geobacteraceae, geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl. Environ. Microbiol. 75:885. Huang, L., M.-M. Chen, W. Wang, H.-B. Hu, H.-S. Peng and Y.-Q. Xu. 2011. Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72. Appl. Microbiol. Biotechnol. 89: 169-177. Jung, S. and J.M. Regan. 2007. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl. Microbiol. Biotechnol. 77: 393-402. Kim, B.H., H.J. Kim, M.S. Hyun and D.H. Park. 1999. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127-131. Kim, B.H., H.S. Park, H.J. Kim, G.T. Kim, I.S. Chang and J. Lee. 2004. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Environ. Microbiol. 63: 672-681. Kim, H.J., H.S. Park, M.S. Hyun, I.S. Chang, M. Kim and B.H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 145-152. Kim, B.H., H.S. Park, H.J. Kim, G.T. Kim, I.S. Chang and J. Lee. 2004. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681. Kim, G.T., M.S. Hyun, I.S. Chang, H.J. Kim, H.S. Park and B.H. Kim. 2005. Dissimilatory Fe(III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J. Appl. Microbiol. 99: 978-987. Lee, J.V., D.M. Gibson and J.M. Shewan. 1977. A numerical taxonomic study of some Pseudomonas-like marine bacteria. Microbiology 98: 439-451. Lee, S.A., Y. Choi, S. Jung and S. Kim. 2002. Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochemistry. 57: 173-178. Leung, K.M., G. Wanger, M.Y. El-Naggar, Y. Gorby, G. Southam and W.M. Lau. 2013. Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior. Nano Lett. 13: 2407-2411. Li, X., G.-Z. Zhong, Y. Qiao, J. Huang, W.H. Hu and X.-G. Wang. 2014. A high performance xylose microbial fuel cell enabled by Ochrobactrum sp. 575 cells. RSC Adv. 4: 39839. Li, S.-L. and K.H. Nealson. 2015. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes. Front. Microbiol. 6: 111. LiFang, D., L. FangBai, Z. ShunGui, H. DeYin, N. JinRen and L. Deng LiFang. 2010. A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells. Chin. Sci. Bull. 55: 99-104. Liu, Z.D., Z.W. Du, J. Lian, X.Y. Zhu, S.H. Li and H.R. Li. 2007. Improving energy accumulation of microbial fuel cells by metabolism regulation using Rhodoferax ferrireducens as biocatalyst. Lett. Appl. Microbiol. 44: 393-398. Logan, B.E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller and S. Freguia. 2006. Microbial fuel cells:  methodology and technology. Environ. Sci. Technol. 40: 5181-5192. Logan, B.E. and J.M. Regan. 2006. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 14: 512-518. Logan, B.E., C. Murano, K. Scott, N.D. Gray and I.M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Water Res. 39: 942-952. Logan, B.E. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7:375-381. Lovley, D.R. 2006. Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4: 497-508. Lovley, D.R. 2008. The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol. 19: 564-571. Lovley, D.R. and E.J.P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54: 1472-1480. Lovley, D.R., R.C. Greening, and J.G. Ferry. 1984. Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl. Environ. Microbiol. 48:81-87. Lovley, D.R. and E.J.P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51: 683-689. Lu, Y., M. Qin, H. Yuan, I. Abu-Reesh and Z. He. 2014. When bioelectrochemical systems meet forward osmosis: accomplishing wastewater treatment and reuse through synergy. Water. 7: 38-50. MacDonell, M.T. and R.R. Colwell. 1985. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst. Appl. Microbiol. 6: 171-182. Malvankar, N.S. and D.R. Lovley. 2014. Microbial nanowires for bioenergy applications. Curr. Opin. Biotechnol. 27: 88-95. Malvankar, N.S., M. Vargas, K.P. Nevin, A.E. Franks, C. Leang and B.C. Kim. 2011. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6: 573-579. Mavrodi, D.V., R.F. Bonsall, S.M. Delaney, M.J. Soule, G. Phillips and L.S. Thomashow. 2001. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183: 6454-6465. Mehta-Kolte, M.G. and D.R. Bond. 2012. Geothrix fermentans secretes two different redox-active compounds to utilize electron acceptors across a wide range of redox potentials. Appl. Environ. Microbiol. 78: 6987-6995. Myers, C.R. and J.M. Myers. 1992. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174: 3429-3438. Nandy, A., V. Kumar and P.P. Kundu. 2013. Utilization of proteinaceous materials for power generation in a mediatorless microbial fuel cell by a new electrogenic bacteria Lysinibacillus sphaericus VA5. Enzyme Microb. Technol. 53: 339-344. Naveen S., Arun P., Suhas B. and H N Ravishankar. 2014. Simultaneous cellulose hydrolysis and bio-electricity generation in a mediatorless microbial fuel cell using a Bacillus flexus strain isolated from wastewater. Rese. Biotechnol. 5(1): 06-12. Nevin, K.P., H. Richter, S.F. Covalla, J.P. Johnson, T.L. Woodard and A.L. Orloff. 2008. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ. Microbiol. 10: 2505-2514. Niessen, J., U. Schroder, F. Harnisch, F. Scholz, and U. Schröder. 2005. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Lett. Appl. Microbiol. 41:286-290. Nimje, V., C.-C. Chen, J.-S. Jean, A.S. Reddy, C.-W. Fan, K.-Y. Pan, et al. 2009. Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. J. Power Sources. 190: 258-263. Park, D., and J.G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81:348-355. Park, H.S., B.H. Kim, H.S. Kim, H.J. Kim, G.T. Kim and M. Kim. 2001. A Novel electrochemically active and fe(III)-reducing bacterium phylogenetically related to clostridium butyricum isolated from a microbial fuel cell. Anaerobe. 7: 297-306. Pham, C., S. Jung, N. Phung, J. Lee, I. Chang and B. Kim. 2003. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related toAeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol. Lett. 223: 129-134. Pilobello, K., L.M. Tender, C.E. Reimers, H.A. Stecher, D.E. Holmes and D.R. Bond. 2002. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20: 821-825. Prasad, D., T.K. Sivaram, S. Berchmans and V. Yegnaraman. 2006. Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent. J. Power Sources. 160: 991-996. Prasad, D., S. Arun, M. Murugesan, S. Padmanaban, R.S. Satyanarayanan, S. Berchmans, and V. Yegnaraman. 2007. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosens. Bioelectron. 22:2604-2610. Rabaey, K., N. Boon, S.D. Siciliano, M. Verhaege and W. Verstraete. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70: 5373-5382. Rabaey, K., N. Boon, M. Höfte and W. Verstraete. 2005. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39: 3401-3408. Rahimnejad, M., G.D. Najafpour, A.A. Ghoreyshi, F. Talebnia, G.C. Premier, G. Bakeri, J.R. Kim, and S.E. Oh. 2012. Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. J. Microbiol. 50:575-580. Raio, A., G. Puopolo, A. Cimmino, R. Danti, G. Della Rocca and A. Evidente. 2011. Biocontrol of cypress canker by the phenazine producer Pseudomonas chlororaphis subsp. aureofaciens strain M71. Biol. Control. 58: 133-138. Reguera, G., K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen and D.R. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature. 435: 1098-1101. Reimers, C.E., P. Girguis, H.A. Stecher, L.M. Tender, N. Ryckelynck and P. Whaling. 2006. Microbial fuel cell energy from an ocean cold seep. Geobiology 4: 123-136. Reimers, C.E., L.M. Tender, S. Fertig and W. Wang. 2001. Harvesting energy from the marine sediment−water Interface. Environ. Sci. Technol. 35: 192-195. Reshetilov, A., S. Alferov, L. Tomashevskaya and O.g. Ponamoreva. 2006. Testing of bacteria Gluconobacter oxydans and electron transport mediators composition for application in biofuel cell. Electroanalysis. 18: 2030-2034. Rismani-Yazdi, H., A.D. Christy, B.A. Dehority, M. Morrison, Z. Yu and O.H. Tuovinen. 2007. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng. 97: 1398-1407. Rittmann, B.E., R. Krajmalnik-Brown and R.U. Halden. 2008. Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nat. Rev. Microbiol. 6: 604-612. Roy, J.N., K.E. Garcia, H.R. Luckarift, A. Falase, J. Cornejo and S. Babanova. 2013. Applied electrode potential leads to Shewanella oneidensis MR-1 biofilms engaged in direct electron transfer. J. Electrochem. Soc. 160: H866-H871. Saeed, H.M., G.A. Husseini, S. Yousef, J. Saif, S. Al-Asheh and A. Abu Fara. 2015. Microbial desalination cell technology: A review and a case study. Desalination. 359: 1-13. Schroder, U. 2007. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 9: 2619-2629. Schroder, U., M. Rosenbaum, U. Schröder and F. Scholz. 2005. In Situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environ. Sci. Technol. 39: 6328-6333. Shi, L., D.J. Richardson, Z. Wang, S.N. Kerisit, K.M. Rosso and J.M. Zachara. 2009. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ. Microbiol. Rep. 1: 220-227. Shi, L., T.C. Squier, J.M. Zachara and J.K. Fredrickson. 2007. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol. Microbiol. 65: 12-20. Sudhakara Prasad, K., A.B. Arun, P.D. Rekha, C.-C. Young, J.-L. Chang and J.-M. Zen. 2009. A microbial sensor based on direct electron transfer at Shewanella sp. drop-coated screen-printed carbon electrodes. Electroanalysis. 21: 1646-1650. Tang, J., G. Yang, J. Wen, Z. Yu, S. Zhou and Z. Liu. 2014. Bacillus thermophilum sp. nov., isolated from a microbial fuel cell. Arch. Microbiol. 196: 629-634. Tender, L.M., S.A. Gray, E. Groveman, D.A. Lowy, P. Kauffman and J. Melhado. 2008. The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. J. Power Sources. 179: 571-575. Thiyagarajan, N., J.-L. Chang, K. Senthilkumar and J.-M. Zen. 2014. Disposable electrochemical sensors: A mini review. Electrochem. Commun. 38: 86-90. Torres, C., A. Kato Marcus and B. Rittmann. 2007. Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl. Microbiol. Biotechnol. 77: 689-697. Venkateswaran, K., D.P. Moser, M.E. Dollhopf, D.P. Lies, D.A. Saffarini and B.J. MacGregor. 1999. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Evol. Microbiol. 49: 705-724. Walker, A.L., and C.W. Walker Jr. 2006. Biological fuel cell and an application as a reserve power source. J. Power Sources. 160:123-129. Wang, X., Y. Feng, H. Wang, Y. Qu, Y. Yu and N. Ren. 2009. Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environ. Sci. Technol. 43: 6088-6093. Wrighton, K.C., P. Agbo, F. Warnecke, K.A. Weber, E.L. Brodie and T.Z. DeSantis. 2008. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J. 2: 1146-1156. Xing, D., S. Cheng, B. Logan and J. Regan. 2010. Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction. Appl. Microbiol. Biotechnol. 85: 1575-1587. Xing, D., Y. Zuo, S. Cheng, J.M. Regan and B.E. Logan. 2008. Electricity generation by Rhodopseudomonas palustris DX-1. Environ. Sci. Technol. 42: 4146-4151. Yang, T.-H., C.-L. Hung, J.-H. Ke and J.-M. Zen. 2008. An electrochemically preanodized screen-printed carbon electrode for achieving direct electron transfer to glucose oxidase. Electrochem. Commun. 10: 1094-1097. Zang, G.-L., G.-P. Sheng, Z.-H. Tong, X.-W. Liu, S.-X. Teng and W.-W. Li. 2010. Direct electricity recovery from Canna indica by an air-cathode microbial fuel cell inoculated with rumen microorganisms. Environ. Sci. Technol. 44: 2715-2720. Zhang, G., Q. Zhao, Y. Jiao, K. Wang, D.-J. Lee and N. Ren. 2012. Efficient electricity generation from sewage sludge usingbiocathode microbial fuel cell. Water Res. 46: 43-52. Zhang, L., S. Zhou, L. Zhuang, W. Li, J. Zhang and N. Lu. 2008. Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochem. Commun. 10: 1641-1643. Zhang, T., C. Cui, S. Chen, H. Yang and P. Shen. 2008. The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem. Commun. 10: 293-297. Zhang, T., L. Zhang, W. Su, P. Gao, D. Li and X. He. 2011. The direct electrocatalysis of phenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila under alkaline condition in microbial fuel cells. Bioresour. Technol. 102: 7099-7102. Zhang, Y., B. Min, L. Huang and I. Angelidaki. 2009. Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Appl. Environ. Microbiol. 75: 3389-3395. Zhang, Y.-C., Z.-H. Jiang and Y. Liu. 2015. Application of electrochemically active bacteria as anodic biocatalyst in microbial fuel cells. Chin. J. Anal. Chem. 43: 155-163. Zhi, W., Z. Ge, Z. He and H. Zhang. 2014. Methods for understanding microbial community structures and functions in microbial fuel cells: A review. Bioresour. Technol. 171: 461-468. Zuo, Y., D. Xing, J.M. Regan and B.E. Logan. 2008. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl. Environ. Microbiol. 74: 3130-3137.
摘要: Bioenergy, an important subject attracts much attentions in the recent years. Electrochemically active bacteria (EAB) which involved in transfering electron derived from organic compounds can be used to produce electricity. In the present studies attempts were made to enrich and isolate EAB from beach samples. The electrochemical characteristics were determined using screen-printed carbon electrode (SPCE) and cyclic voltammetry (CV). A total of 103 isolates were obtained from the enrichment systems. Members belonging to Proteobacteria and Firmicutes were the dominant populations. Total 39 isolates were selected and used to determine their electrochemical activities through biomass or mediator production. The appearance of oxidative peak after inoculation of mediator demonstrated that 25 isolates were EAB. Isolates Shewanella haliotis CE8-B1、Vibrio campbellii KT11、 Alteromonas macleodii N3-5 showed better performance in the production of electricity. By drop-coated method using bacterial biomass, Alteromonas macleodii N3-5、Microbacterium dextranolyticum KT7、Rhizobium huautlense KT8-1 showed potential to transfer electron to electrode. Geobacter sulfurreducens strain PCA, a previously known EAB can produce 90.42 mA/m2 current density in microbial fuel cell (MFC) system in the present study. Isolate N3-5, B7-15, CE8-B1, KT11 and KT8-1 can produce 37.51, 5.19, 30.08, 34.44 and 4.34 mA/m2, respectively. This is the first report demonstrating a diverse of bacterial populations to produce electricity. The SPCE analysis may provide a more convenient and rapid way to determine electrochemical activity of bacteria. These will help to explore EAB from natural ecosystems and develop superior candidates used in electricity production.
生物能源為未來的重要技術,利用電化學活性的細菌為其中一種能同時處理有機廢棄物與產生能源的潛力技術。為了分離具有電化學活性的細菌,本研究設計2種電極篩選系統,自常年有海水覆蓋的沙灘中分離附著於電極表面的電化學活性細菌,並探討其電化學特性以評估應用於微生物燃料電池之可行性。本研究從各電極系統共分離103株分離株,經16S rDNA序列分析歸類後,發現不同基質與孵育時間下電極篩選系統的分離株中以Proteobacteria為優勢菌門,其次為Firmicutes。不同材質電極篩選系統獲得之分離株同樣以Proteobacteria為優勢菌門,不同之處在於前者是以γ-Proteobacteria為主要菌綱,而後者是α- Proteobacteria,顯示不同篩菌方式可獲得不同微生物組成。為建立快速方便且成本低廉的方式以測量細菌的電化學活性,本研究利用可拋棄式網版印刷碳電極(Screen-Printed Carbon Electrodes) 作為測試電極,並結合循環伏安法 (Cyclic voltammetry) 測試各分離株之電化學活性。從電極系統103株分離株中隨機挑選39株不同菌屬或菌種的分離株探討細菌產生mediator之電化學特性與細菌菌落滴覆電子傳遞之能力。在所有試驗菌株中共有25株可由循環伏安圖中偵測出氧化波峰,顯示分離株產生之mediator能將電子傳遞給電極,其中以分離株Shewanella haliotis CE8B1 、 Vibrio campbellii KT11 、 Alteromonas macleodii N3-5具有較高的電化學活性。另外在菌落滴覆測試結果顯示Alteromonas macleodii N3-5 、 Microbacterium dextranolyticum KT7 、 Rhizobium huautlense KT8-1,3株可偵測出氧化波峰。根據上述2種電化學活性測試結果並進行各分離株之行厭氧生長能力測試後,挑選具有電化學活性潛力的5株分離株與過去文獻已得知可應用於微生物燃料電池的Geobacter sulfurreducens strain PCA進行發電測試。在本研究之微生物燃料電池系統中測得PCA可產生90.42 mA/m2之電流密度,而分離株N3-5 、 B7-15 、 CE8-B1 、 KT11與KT8-1則分別產生37.51 、 5.19 、 30.08 、 34.44與4.34 mA/m2之電流密度,為首次以純菌方式於微生物燃料電池試驗中證明可產生電流的新穎電化學活性細菌。
URI: http://hdl.handle.net/11455/90125
文章公開時間: 2015-07-30
顯示於類別:土壤環境科學系

文件中的檔案:
檔案 描述 大小格式 
nchu-104-7102039014-1.pdf6.32 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。