Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90128
標題: Impact of different materials application on the behavior of phosphorus in high phosphorus accumulation of calcareous soils.
添加不同資材對高磷累積之石灰質土壤的磷行為之影響
作者: Chia-Hung Lin
林佳宏
關鍵字: calcareous soils
ameliorated method
phosphorus mobility and utilization
石灰質土壤
改良方法
磷移動性和利用率
引用: 國立中興大學土壤調查試驗中心。 2012。 肥料檢驗方法。/李子純。1983。磷素肥料在土壤中的變化累積及其被旱作利用之研究。中華農業研究。32: 172-184。/林正鈁、蔡彰輝。1994。台灣耕地土壤及作物適栽性評估圖鑑。國立中興大學土壤學系研究所。/林紫慧。1989。評估氧化鐵濾紙法對台灣土壤有效磷抽出之適用性。國立台灣大學農化研究所碩士論文。/郭魁士。1992。土壤學。中國書局印行。第238頁。/陳仁炫。1993。四種有效性磷分析法在探討台灣旱田土壤磷有效性之適宜性評估。 中華農業化學會誌。 31: 287-297。/陳仁炫。1993b。台灣強酸性土壤磷吸附特性研究。中華農業化學會誌。31: 39-411。/陳仁炫。1995。有機質肥料的添加對土壤磷有效性及礦化作用之影響。中華農業化學會誌。33: 533-549。/陳仁炫。1996。酸性和石灰質土壤Inositol Hexaphosphate、Glucose-6-phosphate和磷酸鉀吸附特性之研究。中華農業化學會誌。34: 102-117。/陳仁炫、丁美幸。1993。土壤pH及磷肥施用對酸性和石灰質土壤磷生物有效性的影響。中華農業化學會誌。31: 653-666。/陳仁炫、翁玉娥和王銀波。1994。有機質肥料的添加對土壤磷吸附特性的影響。中華農業化學會誌。32: 332-346。/趙靖豐。2000。以硫磺及硫酸鋁改良石灰質土壤策略下對磷行為的探討。國立中興大學碩士論文。/劉有祥。1995。土壤溫度與水分境況對大肚山土壤磷吸附、磷脫附和磷有效性的影響。國立中興大學碩士論文。/Abdu, N. 2006. Soil-phosphorus extraction methodologies: A review. Afr. J. Agric. Res. 1: 159-161./Abo-Rady, M. D. K., O. Duheash, M. Khalil, and A. M. Turjoman. 1988./Effect of elemental sulfur on some properties of calcareous soils and growth of date palm seedlings. Arid Soil Research and Rehabilitation 2: 121-130./Abrams, M. M. and W. M. Jarrel. 1992. Bioavailability index for phosphorus using ion exchange resin impregnated membranes. Soil Sci. Soc. Am. J. 56: 1532–1537./Afif, E., A. Mater, and J. Torrent. 1993. Availability of phosphate applied to calcareous soils of West Asia and North Africa. Soil Sci. Am. J. 57: 756-760./Alva, A. K., T. J. Baugh, S. Paramasivam, K. S. Sajwan. 2005. Adsorption/desorption of copper by a sandy soil amended with various rates of manure, sewage sludge, and incinerated sewage sludge. J. Environ. Sci. Health Part B, 40: 687-696./Amer, F., D. R. Bouldin, C. A. Black, and F. R. Duke. 1955. Characterization of soil phosphorus by anion exchange resin adsorption and 32P equilibrium. Plant Soil 6: 391-408./Babaria, C. J., and C. L. Patal. 1980. Effect of application of iron farmyard manure and sulfur on the availability of iron in medium black calcareous soil at different moisture regimes. Soil Sci. Soc. J. 28: 302-306./Baligar, V. C., R. J. Wright, and M. D. Smedley. 1991. Enzyme activities in Appalachian soils: 4. dehydrogenase. Commun. Soil Sci. Plant Anal. 22: 1797-1804./Barrow, N. J.,1979. The description of desorption of phosphate from soils. J. Soil Sci. 30: 259-270. /Beffa, T., M. Blanc, and R. Nogales. 2005. Hydrolytic enzyme activities of extracted humic substances during the vermicompost of lignocellulosic olive waste. Bioresour. Technol. 96: 785-790./Bolan, N. S., 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphates by plants. Plant Soil 134: 189-207./Bolan, N. S., R. Naidu, S. Mahimairaja, and S. Baskaran. 1994. Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol. Fert. Soils 18: 311-319./Bowman, R. A., S. R. Olsen, and F. S. Watanabe. 1978. Greenhouse evaluation of residual phosphate by four phosphorus methods in neutral and calcareous soils. Soil Sci. Soc. Am. J. 42: 451–454./Bramley, R. G. V., N. J. Barrow, and T. C. Shaw. 1992. The reaction between phosphate and dry soil. I. The effect of time, temperature and moisture status during incubation on the amount of plant available P. J. Soil Sci. 43: 749-758./Bramley, R. G. V., and N. J. Barrow. 1992. The reaction between phosphate and dry soil. II. The effect of time, temperature and moisture status during incubation on the amount of plant available P. J. Soil Sci. 43: 759-766./Bray R. H., L. T. Kurtz, 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59: 39 -45./Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-total. p. 595-624. In A. L. Page et al., (ed) Methods of soil analysis. Part 2. 2nd ed. Agron. Mongr. 9. ASA and SSSA., Madison. WI./Bubba, M. D., C. A. Arias, H. Brix. 2003. Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured bythe Langmuir isotherm. Water Res. 37: 3390–3400./Cassell, D. K., and A. Klute. 1986. Water potential. In. A. Klute et al. (ed.) Methods of soil analysis. Part I, 2nd edition. Agronomy. 9:563-596. ASA. SSA, Madison, WI./Chang, S.C., and M.L. Jackson. 1957. Fractionation of soil phosphorus. Soil Sci. 84: 133–144./Chen, J. H., and S. A. Barber. 1991. Aging effects of lime and phosphate addition on phosphorus availability in an acid soil. Commun. Soil Sci. Plant Anal. 22: 419-430./Cole, C. V., S. R. Olsen, and C. O. Scott. 1953. The nature of phosphate sorption by calcium carbonate. Soil Sci. Soc. Am. J. 17: 352-356./Colwell, J. D. 1963. The estimation of the phosphorus requirements of wheat in southern New South Wales by soil analysis. Aust. J. Exp. Agric. Anim. Husb. 3: 190-197./Connolly, J. H., and J. Jellison. 1995. Calcium translocation, calcium oxalate accumulation, and hyphal sheath morphology in the white-rot fungus Resinicium bicolor. Can. J. Bot. 73: 927-936./Cooperband, L. R., and T. J. Logan. 1994. Measuring in situ changes in labile soil phosphorus with anion-exchange membranes. Soil Sci. Soc. Am. J. 58: 105-114./Crews, T. E., K. Kitayama, J. H. Fownes, R. H. Riley, D. A. Herbert, D. M. Dombois, P. M. Vitousek. 1995. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecological Soc. Am. 76: 1407-1424./Cross, A. F., and W. H. Schlesinger. 1995. A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64: 197-214./Curtin, D., J. K. Syers, and G. W. Smillie. 1987. The importance of exchangeable cations and resin-sink characteristics in the release of soil phosphorus. J. Soil Sci. 38: 711–716./Dinkelaker, B., V. Romheld, and H. Marschner. 1989. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ. 12: 285-292./Dormaar, J. 1972. Seasonal patterns of soil organic phosphorus. Can. J. Soil Sci. 52: 107-122./Earl, K. D., J. K. Syers, and J. R. McLaughlin. 1979. Origin of citrate, tartrate, and acetate on phosphate sorption by soils and synthetic gels. Soil Sci. Soc. Am. J. 43: 674-678./Easterwood, G. W., and J. B. Sartain. 1990. Clover residue effectiveness in reducing orthophosphate sorption on ferric hydroxide coated soil. Soil Sci. Soc. Am. J. 54: 1345-1350./Fixen, P.E., A. E. Ludwick, and S. R. Olsen. 1983. Phosphorus and potassium fertilization of irrigated alfalfa on calcareous soil: II. Soil phosphorus solubility relationships. Soil Sci. Soc. Am. J. 47: 112-117./Fixen, P.E. and J.H. Grove. 1990. Testing soils for phosphorus. p. 141-180. In R.L. Westerman (ed.) Soil Testing and Plant Analysis. SSSA, Madison, WI./Fox, R. L., and E. J. Kamprath. 1970. Phosphorus sorption isotherm for evaluating the phosphorus requirement of soils. Soil Sci. Soc. Am. Proc. 34: 902-907./Fox, T. R., N. B. Comerford, and W. W. McFee. 1990. Phosphorus and aluminum release from a spodic horizon mediated by organic acids. Soil Sci. Soc. Am. J. 54: 1763-1767./Gao, Y., L. Ren, and W. Ling. 2010. Desorption of phenanthrene and pyrene in soils by root exudates. Bioresour. Technol. 101, 1159–1165./Gardner, W. K., D. G. Parberry, and D. A. Barber. 1982. The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface. Plant Soil 68: 19-32./Gardner, W. K., D. G. Parberry, and D. A. Barber. 1983. The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70: 107-124./Gee, G. W., and J. W. Bauder. 1986. particle-size analysis. In A. Klute et al., (eds) 'Methods of soil analysis.' Part I , 2nd edition. Agronomy. 9: 404-408. ASA, Madison, Wisconsin./Gerke, J., L. Beissner, and W. Romer. 2000. The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. I. The basic concept and determination of soil parameters. J. Plant Nutr. Soil Sci. 163: 207-212./Gonzalez-Pradas, E., M. Villafrance-Sanchez, and M. Socias-viciana. 1993. Phosphate and nitrate sorption on calcareous soils from Spain. Arid Soil Research and Rehabilitation 7: 181-190./Grzebisz, W.. and J. J. Oertli., 1992. Comparison of the Neubauer bioassay with some classical and universal extractants for determining plant available P in cultivated soil. Commun. Soil Sci. Plant Anal. 23: 733-746./Grunes, D. L., H. J. Haas, and S. H. Shih. 1955. Effect of dryland cropping on available phosphorus of Cheyenne fine sandy loam. Soil Sci. 80: 127-138./Guang W., J. J. Schoenau, S. P. Mooleki, S. Inanaga, and T. Yamamoto. 2003. Effectiveness of an elemental sulfur fertilizer in an oilseed-cereal-legume rotation on the Canadian prairies. Soil Sci. J. Plant Nutr. 166: 54-60./Haas, H. J., D. L. Grunes, and G. A. Reichman. 1961. Phosphorus changes in Great Plains soils as influenced by cropping and manure applications. Soil Sci. Soc. Am. Proc. 25: 215-218./Hamad, M. E., D. L. Rimmer, and J. K. Syers. 1992. Effect of iron oxide on phosphate sorption by calcite and calcareous soils. J. Soil Sci. 43: 273-281./Harrison, A. F. 1982a. Labile organic phosphorus mineralization in relationship to soil properties. Soil. Biol. Biochem. 14: 343-351./Hassan, N., and R. A. Olsen. 1976. Influence of applied sulfur on availability of soil nutrients for corn (Zea may L.) nutrition. Soil Sci. Am. Proc. 30: 284-286./Hauser, G. F. 1973. Calibration of soil tests for fertilizer recommendations. Soil Bull. 18, FAO. Rome, Italy./Hedley, M. J., J. W. B. Stewart, and B. S. Chauhan. 1982. Changes in inorganic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 46:970-976./Hinsinger, P., 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237: 173–195./Hoeft, R. G., and R. C. Sorensen. 1969. Micronutrient availability in three soil materials as affected by application of zinc, lime and sulfur. Soil Sci. Soc. Am. Proc. 30: 284-286./Holford, I.C.R., and G. E. G. Mattingly. 1975. Phosphate sorption by Jurassic oolitic limestone. Geoderma 13: 257-264./Holford, I.C.R., R. W. M. Wedderburn, and G. E. G. Mattingly. 1974. A Langmuir two-surface equation as a model for phosphate adsorption by soils. J. Soil Sci. 25: 242-255./Hue, N. V., 1991. Effect of organic acids/anions on P sorption and phytoavailability in soils with different mineralogies. Soil Sci. 152: 463-471./Iyamuremye, F., R. P. Dick, and J. Baham. 1996. Organic amendments and phosphorus dynamics: III. Phosphorus speciation. Soil Sci. 161: 444-451./Jalali, M., and E. Naderi. 2012. The impact of acid rain on phosphorus leaching from a sandy loam calcareous soil of western Iran. Environ Earth Sci. 66: 311–317./Jalali, M., and L. Karamnejad. 2011. Phosphorus leaching in a calcareous soil treated with plant residues and inorganic fertilizer. J. Plant Nutr. Soil Sci. 174: 220–228./Janzen, H. H., and J. R. Bettany. 1986. Release of available sulfur from fertilizers. Can. J. Soil Sci. 66: 91-103./Janzen, H. H., and J. R. Bettany. 1987. Oxidation of elemental sulfur under field conditions in central Saskatchewan. Can. J. Soil Sci. 67: 609-618./Jones, C. A., A. N. Sharpley, and J. R. Williams. 1984. A simplified soil and plant phosphorus model: III. Testing. Soil Sci. Soc. Am. J. 48: 810-813./Jones, D. L., and A. C. Edwards. 1998. Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol. Biochem. 30: 1895-1902./Jurinak, J. J., L. M. Dudley, M. F. Allen, and W. G. Knight. 1986. The role of calcium oxalate in the availability of phosphorus in soils of semiarid regions: A thermodynamic study. Soil Sci. 142: 255-262./Kafkafi, U., B. Bar-Yosef, R. Rosenberg, and G. Sposito. 1988. Phosphorus adsorption by kaolinite and montmorillonite: II. Organic anion competition. Soil Sci. Soc. Am. J. 52: 1585-1589./Kapoor, K.K. and M.M. Mishra., 1989. Microbial transformation of sulphur and plant nutrition. In: Soil microorganisms and crop growth. L.L. Somani and S.L. Bhandari. (Eds.). Diyajyoti Prakasam, India, pp: 1-30./Karamanos, R. E., and H. H. Janzen. 1991. Crop response to elemental sulfur fertilizers in central Alberta. Can. J. Soil Sci. 71: 213-225./Kashirad, A., and J. Bazarqani. 1972. Effect of sulfur on pH and availability of phosphorus in calcareous soils. Z. Pflanzener naehr. Bodenkd. 131: 6-13./Khasawneh, F. E., E. C. Sample, and E. J. Kampreth. 1980. The Role of Phosphorus in Agriculture. Published by ASA, CSSA, and SSSA, Madison, WI./Kirk, G. J. D., 1999. A model of phosphate solubilization by organic anion excretion from plant roots. Eur. J. Soil Sci. 50: 369-378./Kovar, J. C., and S. A. Barber. 1988. Phosphorus supply characteristics of 33 soils as influenced by seven rate of phosphorus addition. Soil Sci. Soc. Am. J. 52: 160-165./Kraffczyk I, G. Trolldenier, and H. Beringer. 1984. Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol. Biochem. 16: 315-322./Kumpiene, J., A. Lagerkvist, C. Maurice. 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review. Waste Management 28: 215-225./Knudsen, O., G. A. Peterson, and P. F. Pratt. 1982. Lithium, sodium and potassium. In A. L. Page et al. (ed.) Method of soil analysis. Part II, 2nd edition. Agronomy. P.225-246./Kuo, S. 1988. Application of a modified Langmuir isotherm to phosphate sorption by some acid soil. Soil Sci. Soc. Am. J. 52: 97-102./Kuo, S. 1990. Phosphate sorption implication on phosphate soil tests and uptake by corn. Soil Sci. Soc. Am. J. 54: 131-135./Kuo, S. 1996. Phosphorus. p. 869-919. In D.L. Sparks. (ed.). Methods of Soil Analysis: Part 3- Chemical Methods. SSSA, Madison, WI. /Kuo, S., and E. G. Lotse. 1972. Kinetics of phosphate adsorption by calcium carbonate and Ca-kaolinite. Soil Sci. Soc. Am. Proc. 36: 725-729./Lapeyrie, F. 1988. Oxalate synthesis from soil bicarbonate by the mycorrhizal fungus Paxillus involutus. Plant Soil 110: 3-8./Lapeyrie, F., G. A. Chilvers, and C. A. Bhem. 1987. Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus (Batsch. Ex Fr.) Fr. New Phytol. 106: 139-146./Lawrence, J. R., and J. J. Germda. 1988. Relationship between microbial biomass and elemental sulfur oxidation in agricultural soils. Soil Sci. Soc. Am. J. 52: 672-677./Lindsay, W. L., 1979. Chemical Equilibria in Soils. Wiley, New York./Logan, T. J. and R. L. Chaney. 1983. Metals. Pages 235–326 in A. L. Page, T. L./Luscombe, P.C., J.K. Syers, and P.E.H. Gregg. 1979. Water extraction as a soil testing procedure for phosphate. Commun. Soil Sci. Plant Anal. 10:1361-1369./Malhi, S. S., K. Heier, and E. Solberg. 2000. Effectiveness of elemental S fertilizers on forage grass. Can. J. Plant Sci. 80: 105-112./Mallarino, A. P., 1997. Interpretation of soil phosphorus tests for corn in soils with varying pH and calcium carbonate content. J. Prod. Agric. 10:163 – 167. /Martin, H. W., and D. L. Sparks. 1983. Kinetics of non-exchangeable potassium release from two Coastal Plain soils. Soil Sci. Soc. Am. J. 47: 883–887./Mattingly, G. E. G. 1975. Labile phosphate in soils. Soil Sci. 119: 369-375./McDowell, R. W., and A. N. Sharpley. 2003. Phosphorus solubility and release kinetics as a function of soil test P concentration. Geoderma 112: 143-154./McGill, W. B., and C. V. Cole. 1981. Comparative aspects of cycling organic C, N, S, and P through soil organic matter. Geoderma 26: 267-286./Meek, B. D., L. E. Graham, T. J. Donovan, and K. S. Mayberry. 1979. Long-term effect of manure on soil nitrogen, phosphorus, potassium, sodium, organic matter and water infiltration rate. Soil Sci. Am. Proc. 39: 1100-1102./Mengel, D. K., and E. A. Kirkby. 1981. Principles of plant nutrition , 3rd ed./Menon, R. G., L. L. Hammond, and H. Sissingh. 1984. Determination of plant-available phosphorus by iron-impregnated filter paper (Pi) soil test. Soil Sci. Soc. Am. J. 53: 110–115./Menon, R. G., S. H. Chien, L. L. Hammond, and B. R. Arora. 1990. Sorption of phosphorus by iron-impregnated filter paper ( P soil test) embedded in soils. Plant Soil 126: 287-294./Murphy, J., and J. P. Riley. 1962. A modified single solution for the determination of phosphate in natural waters. Anal. Chemica. Acta. 27: 31-36./Nanzyo, M., R. Dahlgren, and S. Shoji. 1993. Chemical characteristics of volcanic ash soils. Pages 145-187 in S. Shoji, M. Nanzyo, and R. Dahlgren, editors. Volcanic ash soils. Elsevier, Amsterdam, The Netherlands./Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. In A. L. Page. (ed.) Methods of soil analysis. Part II, 2nd edition. Agronomy. 9: 539-579. ASA, Madison, WI./Nyborg, M., A. Ayala, P. Yeung, S. S. Mahli, and M. Schier. 1980. The rate of oxidation of elemental sulfur fertilizers. Pages 216-223 inProc. '80 Soils and Crops Workshop, Saskatoon, Sask./Nziguheba, G., C. A. Palm, R. J. Buresh, and P. C. Smithson. 1998. Soil phosphorus fractions and adsorption as affected by organic and inorganic sources. Plant and Soil 198: 159–168./Okon, P. B., S. O. Joseph, and C. A. Uche. 2005. Effect of Rice Husk Ash and Phosphorus on Some Properties of Acid Sands and Yield of Okra. Commun. Soil Sci. Plant Anal. 36: 833–845./Olsen, S.R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 939: 1-19. US Gov. Print Office, Washington, DC./Olsen, S. R., and F. S. Watanabe. 1957. A method to determine a phosphorus adsorption maximum of soils as measured by the Langmuir isotherm. Soil Sci. Soc. Am. Proc. 21: 144-149./Olsen, S. R., and L. E. Sommers. 1986. In'Methods of soil analysis, part 2. Chemical and microbiological properties' 2nd ed. ( A. L. Page ed.) Chap. 24. pp. 403-430. ASA-SSSA Inc. Madison, Wisconsin./Othieno, C. O. 1973. The effect of organic mulches on yield and phosphorus utilization by plants in acid soils. Plant Soil 38: 17-32./Palm, C. A., and A. P. Rowland. 1997. Chemical characterization of plant quality for decomposition. Nature, Plant Litter Quality and Decomposition 11: 379-392./Paris, F., B. Botton, F. Lapeyrie. 1996. In vitro weathering of phlogopite by etcomycorrhizal fungi. II. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil 179: 141-150.Patrick, W.H., Jr., and Mahapatra, I.C. 1968. Transformation and availability to riceof nitrogen and phosphorus in waterlogged soils. Adv. Agron. 20:323-359./Perria, M. G., and M. A. Z. Arruda. 2003. Vermicompost as a natural adsorbent material: characterization and potentialities for cadmium adsorption. Journal of the Brazilian Chemical Society 14: 39-47./Polyzopoulos, N. A., V. S. Keramidas, and H. Kiosse. 1985. Phosphate sorption by some Alfisols of Greece as described by commonly used isotherms. Soil Sci. Soc. Am. J. 49: 81-84./Pote, D.H., T.C. Daniel, A.N. Sharpley, P.A. Moore, Jr., D.R. Edwards, and D.J. Nichols. 1996. Relating extractable soil phosphorus to phosphorus losses in runoff. Soil Sci. Soc. Am J. 60:855-59./Pratt, P. F. 1951. Potassium removal from Iowa soils by greenhouse and laboratory procedures. Soil Sci. 72: 107–118./Qian P., and J. J. Schoenau. 2001. Practical applications of ion exchange resins in agricultural and environmental soil research. Can. J. Soil. Sci. 162: 9-22./Rajan, S. S. S., and R. L. Fox. 1972. Phosphate adsorption by soils. I. Influence of time and ionic environment on phosphate adsorption. Commun. Soil Sci. Plant Anal. 3: 493-504./Reddy, K. R., M. R. Overcash, R. Khaleel, and P. W. Westerman. 1980. Phosphorus adsorption-desorption characteristics of two soils utilized for disposal of animal waste. J. Environ. Qual. 9: 86-92./Ryan, J., and J. L. Stroehlein. 1979. Sulfuric acid treatment of calcareous soils: Effect on phosphorus solubility, inorganic phosphorus forms, and plant growth. Soil Sci. Soc. Am. J. 43: 731-735./Salomon, M., and J. B. Smith. 1957. A comparison of methods for determining extractable soil potassium in fertilizer test plots. Soil Sci. So. Am. Proc. 21: 222–225./Sanchez, P. A., M. P. Gichuru, and L. B. Katz. 1982. Organic matter in major soils of the tropical and temperate regions. 12th Int. Congr. of Soil Science Symposia Papers I. 1: 99-114./Schollenberger, C. J., and C. W. Whittaker. 1958. Improved determination of carbonates in soils. Soil Sci. 85: 10-13./Sen Gupta, M. B., and A. H. Cornfield. 1963. Phosphorus in calcareous soil. III. 'Available Phosphate' in calcareous soils as measured by five chemical methods and phosphate uptake by Ryegrass in a pot test. J. Sci. Food Agric. 14: 563-567./Sholeh, Lefroy, R. D. B., and G. J. Blair. 1997. Effect of nutrients and elemental sulfur particle size on elemental sulfur oxidation and the growth of Thiobacillus thiooxidans. Aust. J. Agric. Res. 48: 497-501./Sibbesen, E. 1978. An investigation of the anion-exchange method for soil phosphate extraction. Plant Soil 50: 305-321./Skogley, E. O., S. J. Georgitis, J. E. Yang, and B. E. Schaff. 1990. The phytoavailability soil test-PST. Commun. Soil Sci. Plant Anal. 21: 1229–1243./Solis, P., and J. Torrent. 1989. Phosphate sorption by calcareous Vertisols Inceptisols of Spain. Soil Sci. Soc. Am. J. 53: 456-459./Staunton S., and F. Leprince. 1996. Effect of pH and some organic anions on the solubility of soil phosphate: implications for P bioavailability. European Journal of Soil Science 47: 231-239./Stevenson, F. J. 1986. Cycle of soil. Carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley and Sons, Inc., USA./Str?m, L., A. G. Owen, D. L. Godbold, and D. L. Jones. 2002. Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biology and Biochemistry 34: 703-710./Suthar S., 2010. Recycling of agro-industrial sludge through vermitechnology. Ecological Engineering 36: 1028-1036./Syers, J. K., G. W. Smillie, and J. D. Williams. 1972. Calcium fluoride formation during extraction of calcareous soils with fluoride: I. Implications to inorganic P fractionation schemes. Soil Sci. Soc. Am. Proc. 36: 20-25./Taghipour, M., and M. Jalali. 2013. Effect of low-molecular-weight organic acids on kinetics release and fractionation of phosphorus in some calcareous soils of western Iran. Environ Monit Assess. 185: 5471–5482./Tarkalson, D. D., and A. B. Leytem. 2009. Phosphorus mobility in soil columns treated with dairy manures and commercial fertilizer. J. Plant Nutr. Soil Sci. 174: 73-80./Tiessen, H., and J. W. B. Stewart. 1985. The biogeochemistry of soil phosphorus. Pages 463-472 in D. E. Caldwell, J. A. Brierley, and C. L. Brierley, editors. Planetary ecology. Van Nostrand Reinhold, New York, USA./Uehara, G., and G. P. Gillman. 1981. The mineralogy, chemistry and physics of tropical soils with variable charge clays. Westview, Boulder, Colorado, USA./Verrecchia, E. P., 1990. Litho-diagenetic implications of the calcium oxalate-carbonate biogeochemical cycle in semiarid calcretes, Nazareth, Israel. Geomicrobiology J. 8: 87-99./Verrecchia, E. P., and J. L. Dumont. 1996. A biogeochemical model for chalk alteration by fungi in semiarid environments. Biogeochemistry 35: 447-470./Violante, A., and L. Gianfreda. 1993. Competition in adsorption between phosphate and oxalate on an aluminum hydroxide montmorillonite complex. Soil Sci. Soc. Am. J. 57: 1235-1241./Vivekanandan, M., and E. F. Paul. 1990. Effect of large manure applications on soil P intensity. Commun. Soil Sci. Plant Anal. 21: 287-297./Walbridge, M. R., 1991. Phosphorus availability in acid organic soils of the lower North Carolina coastal plain. Ecology 72: 2083-2100./Walker, T. W., and J. K. Syers. 1976. The fate of phosphorus during pedogenesis. Geoderma 15: 1-19./Wang, M. K., and Y. M. Tzou. 1995. Phosphate sorption by calcite, and iron-rich calcareous soils. Geoderma 65: 249-261./Watanabe, F. S., and S. R. Olsen. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. Proc. 29: 677- 678./Williams, J. D. H., J. K. Syers, R.F. Harris, and D. E. Armstrong. 1971. Fractionation of inorganic phosphate in calcareous lake sediments. Soil Sci. Soc. Am. Proc. 35: 250–255./Williams, J. D. H., J. K. Syers, and T. W. Walker. 1967. Fractionation of soil inorganic phosphate by a modification of Chang and Jackson's procedure. Soil Sci. Soc. Am. J. 31: 736-739./Wood, T. M., Bormann, F. H., and Voigt, G. K. 1984. Phosphorus cycling in a northern hardwood forest: Biological and chemical control Science 223: 391-393./Yadav, A., and V. K. Garg. 2009. Feasibility of nutrient recovery from industrial sludge by vermicomposting technology. Journal of Hazardous Materials 168: 262-268./Yang, J. E., and J. S. Jacobsen. 1990. Soil inorganic phosphorus fractions and their uptake relationships in calcareous soils. Soil Sci. Soc. Am. J. 54: 1666-1669./Yli-Halla, M. 1990. Comparison of a bioassay and three chemical methods for determination of plant-available P in cultivated soils of Finland. J. Agric. Sci. Finl. 62: 213-319./Zech, W., N. Senesi, G. Guggenberger, K. Kaiser, J. Lehmann, T. M. Miano, A. Miltner, and G. Schroth. 1997. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79: 117-161.
摘要: High pH and the presence of CaCO3 usually result in strong fixation by soil and low availability of phosphorus (P) in calcareous soils. Due to P is difficult to move in the soil, and farmers are accustomed to apply fertilizer by broadcast, so phosphate is usually enriched in surface soil. In addition to low rate of P fertilizer utilization, the eutrophication of surface water is often caused through the soil erosion. It is necessary to promote downward movement of enriched P and increase the utilization of P fertilizer by suitable strategies. Two different calcareous soils with varying CaCO3 content were selected in this study, including Shetou soil and Chunliao soil. Three incubation tests and one leaching column study were to (1) evaluate the effects of different materials addition on the availability of P in Shetou soil, including meal, rice husk ash, potassium humate, composted pig manure, composted sugarcane waste, sulfur (S) and citric acid; (2) study availability of P in high-P Chunliao soil affected by different materials with time, including meal, rice husk ash, potassium humate, composted pig manure, composted sugarcane waste, sulfur and citric acid. In addition, a column leaching experiment was used to investigate the mobility and availability of P along soil profile by six ameliorating methods, including: meal, rice husk ash, potassium humate, composted sugarcane waste and citric acid were mixed in the 0-8 cm hight of high-P Chunliao soil separately, 8 cm hight of high-P Chunliao soil mixed with 12 cm hight of Chunliao subsoil. Results showed that the contents of solution-P with materials addition all increased in Shetou soil except composted sugarcane waste and sulfur. The net increase of P release was found in the treatment of citric acid addition due to its low P content. In addition, the contents of Olsen-P and Resin-P of Shetou soil were increased by materials addition except potassium humate, composted sugarcane waste and sulfur, and the net increase of P release was found in citric acid treatment due to its low P content. The results also showed that the treatment of rice hush ash addition had higher capacity in increasing solution P content due to its low P content, followed by the treatment with S addition. Higher increase in the contents of Olsen-P and Resin-P also found in rice hush ash treatment due to its low P content, followed by citric acid treatment. The results at leaching study showed that the organic materials addition could improve the water infiltration and drainage situation of the soils except citric acid addition. Adding Rice husk ash, potassium humate and composted sugarcane waste were relatively better in promoting P downmoving and availabilities than the treatment that mixed high-P topsoil with subsoil within 20 cm depth, especially in the treatments of rice hush ash and composted sugarcane waste addition in the topsoil.
石灰質土壤中因含碳酸鈣,及高pH值之原因,導致磷易被土壤固定,而使其有效性降低。磷在土壤中不易移動,且農友習慣以撒施方式施肥,故磷常富集於表土,除磷肥利用率低外,易經由表土流失而造成地表水優養化作用。如何以改良方式促進表土富集磷之石灰質土壤的磷往下移動和增進磷肥利用率,實值得探究。本試驗選取不同碳酸鈣含量之兩種石灰質土壤 (社頭土壤和圳寮土壤),進行培育或淋洗試驗以 (1) 評估不同資材之添加 (粕類、稻殼灰、腐植酸鉀、豬糞堆肥、蔗渣堆肥、硫磺和檸檬酸) 對社頭土壤磷有效性的影響;(2) 探討不同資材之添加 (粕類、稻殼灰、腐植酸鉀、豬糞堆肥、蔗渣堆肥、硫磺和檸檬酸) 對高磷圳寮土壤磷有效性隨時間的變化影響。另,以管柱淋洗方式探討六種改良方式對磷在土壤剖面移動及有效性的影響;包括分別將粕類、稻殼灰、腐植酸鉀、蔗渣堆肥、檸檬酸添加到管柱上層之高磷圳寮土壤及將高磷表土與下層土壤 (8-20 cm) 混合處理者,每處理三重復。培育試驗結果顯示,除蔗渣堆肥及硫磺外,其他資材之添加均顯著提升社頭土壤溶液磷濃度。檸檬酸加入磷量最低,故磷釋出的淨增進效果較佳。除腐植酸鉀、蔗渣堆肥和硫磺外,其他資材之添加均顯著增進社頭土壤Olsen-P和陰離子交換樹脂磷含量,而檸檬酸加入磷量最低,故磷釋出的淨增進效果較佳。結果亦顯示,由於隨稻殼灰和硫磺加入磷量較低,故稻殼灰之添加在增進圳寮高磷土壤溶液磷淨釋出量較高,而硫磺次之,且稻殼灰增進土壤Olsen-P和陰離子交換樹脂磷的效果最佳,而檸檬酸次之。淋洗試驗結果顯示,除檸檬酸處理外,有機資材的添加均有助於水在剖面入滲及改善排水狀況。添加稻殼灰、腐植酸鉀和蔗渣堆肥,在增進磷往下移動及有效性的效果相對較佳,且這些資材土表添加的效果優於將高磷表土與下層土壤 (8-20 cm) 混合處理者;尤其是以表面施用稻殼灰和蔗渣堆肥。
URI: http://hdl.handle.net/11455/90128
文章公開時間: 2015-08-31
Appears in Collections:土壤環境科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.