請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/90130
標題: Estimation and Application of Potential Evapotranspiration by Remote Sensing
潛在蒸發散量遙測估算技術與應用
作者: Ming-Ren Syu
許銘仁
關鍵字: Evapotranspiration
Remote sensing
Incident solar radiation
Land surface temperature
crop water productivity
蒸發散量
遙感探測
日射量
地表溫度
作物水分生產力
引用: 王如意、易任 。1979。應用水文學。 國立編譯館出版 。 王依蘋。2010。應用遙測資訊協助判釋影響水稻產量土壤限制因子之研究。國立中興大學土壤環境科學系博士論文。 申雍、黃學文。1996 。臺灣西南部地區潛在蒸發散量之估算與應用。中華農業氣象。3: 141-149。 江彥鋒。2005。應用MODIS衛星影像推估森林生態系蒸發散量。國立屏東科技大學森林系碩士論文。 何漢傑。2008。利用MODIS影像於水稻田蒸發散之研究。國立中央大學太空科學研究所碩士論文。 林文鵬、王長耀。2010。大尺度作物遙感監測方法與應用。北京科學出版社。 林博雄、劉紹臣、馮欽賜、周宗玄、葉瑞元。2004。台灣地區太陽輻射量之校驗與長期趨勢。第八屆全國大氣科學研討會。桃園。 林斯利、 柯勒爾 、 鮑休斯 、林廣台 、 徐碧治。1995。水文學。麥格羅希爾出版 高立發行 初版。 邱永和。1977。區域蒸散量估算問題-以臺灣西南地區為例。中華氣象學報,第23卷,第35-42頁。 邱垂錫。1988。 農業氣象學。徐氏基金出版社。 俞宏、石漢青。2002。利用裂窗法反演陸地地表溫度的研究進展。氣象科學。22卷4期:494-500。 姚銘輝、陳守泓。2008。利用潛熱通量資料驗證水稻田蒸發散模式。作物、環境與生物資訊。5卷1期:29-39。 施均程。2003。臺灣森林集水區之蒸發散量推估。國立中興大學。水土保持學系碩士論文。 徐森雄、唐琪。1994。不同日照計觀測結果比較。中華農業氣象。1:75-79。 祝善友、張桂欣、尹球、匡定波。2006。地表溫度熱紅外遙感反演的研究現狀及其發展趨勢。遙感技術與應用。21卷5期:420-425 張子瑩。2010。應用遙測影像於地表熱通量平衡之研究。國立中央大學太空科學研究所博士論文。 張原華。2008。台灣地區日射量特性之研究。環球技術學院環境資源管理研究所碩士論文。 張格綸。2007。應用蒸發皿系數推估地區蒸發散量之研究。國立成功大學資源工程學系碩士論文。 郭振民、杜榮鴻、林錦源、游保杉。2005。AVHRR及MODIS衛星影像估算潛勢蒸發散量之比較。台灣水利季刊。第53卷,第4期,第13-24頁。 郭振民、陳姜琦、游保杉。2002。應用NOAA衛星遙測估算蒸發散量之氣象因子。農業工程學報季刊。第48卷,第3期,第19-30頁。 曾忠一。1988。大氣衛星遙測學。渤海堂文化事業公司印行。 曾忠一。1988。大氣輻射。聯經出版社。 曾柏凱。2004。結合衛星遙測估算蒸發散量之應用探討。國立成功大學水利及海洋工程學系碩士論文。 黃文雄。1968。太陽能之應用及理論 協志工業叢書。 pp22~58。 黃振昌、宋易倫。2003。Penman-Monteith方程式蒸氣壓力差最佳計算式之探討。氣象學報。45:53-70。 楊偉甫。2010。台灣地區水資源利用現況與未來發展問題。用水合理化與新生水水源開發論壇。台北。 董志明、劉建位、劉建慧。2006。台灣地區日射量特性之探討。能源季刊。36卷3期 76-90。 劉建位。2006。台灣地區日射量之分析。環球技術學院環境資源管理研究所碩士論文。 蕭鋒、 林博雄、 賴彥任。 2011。 由MTSAT衛星影像和數位地形資料估算臺灣地表太陽輻射量。大氣科學。39:1 53-67。 賴彥任。2003。集水區內太陽輻射量時空分佈估算之研究。國立台灣大學森林所博士論文。 簡子杰。2006。利用遙測影像反演水稻田蒸發散量 之研究。國立中央大學太空科學研究所碩士論文。 Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C.Moeller, and L. E. Gumley. 1998. Discriminating clear skyfrom clouds with MODIS. J. Geophys. Res. 103(32):141–157. Allen, R. G., M. A., M. Tasumi, W. Bastiaanssen, W. Kramber, and H. Anderson. 2001. Evapotranspiration from Landsat (SEBAL) for water rights managementand compliance with multi-state water compacts. IGARSS. 2:830-833. Anderson M. C., J. R. Mecikalski, J. A. Othkin and W. P. Kustas. 2007. A climatological study of evapotranspiration and moisture stress across the continental United states based on thermal remote sensing:1. Model formulation. J. Geophys. Res. 112: D10117. Anding, D., R. Kauth. 1970. Estimation of sea surface temperature from space,Remote Sensing Environ. 1:217–220. Bastiaanssen, W. G. M., E. J. M. Noordman, H. D. Pelgrum, G., B. P. Thoreson, and R. G. Allen. 2005. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions, ASCE Journal of Irrigation and Drainage Engineering. 131:85-93. Bastiaanssen, W.G.M. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin,Turkey. J. Hydrol. 229:87-100. Bastiaanssen, W.G.M., M. Menenti, R.A. Feddes, A.A.M. Holtslag. 1998. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. Journal of Hydrology. 212-213:198-212. Batiaanssen, W.G.M., D.J. Molden, I.W. Makn. 2000. Remote sensing for irrigated agriculture:examples from research and possible applications. Agric. Water Manage. 46:137-155. Becker, F. and Z.L. Li, 1990. Towards a local split window method over land surface. Int. J. Remote Sens. 3:369-393. Beyer, H.G., C. Costanzo, D. Heinemann. 1996. Modifications of the heliosat procedure for irradiance estimates from satellite images. Sol. Energy. 56:207-212. Calder, I.R. 1990. Evaporation in the uplands. John Wiley & Sons Ltd.,Chichester, 166. Cano, D. 1982. Etude de l'ennuagement par analyse de sequences d'images de satellite. Application a l'evaluation du rayonnement solaire global au sol. These de Doctorat, ecole Nationale Superieure des Telecommunications, Paris, France. Cano, D., J.M. Monget, M. Albuisson, H. Guillard, N. Regas, L. Wald. 1986. A method for the determination of the global solar radiation from meteorological satellite data. Sol. Energy. 37:31-39 Caselles, V., Coll, C, Valor, E. 1997. Land surface emissivity and temperature determination in the whole HAPEX-Sahel area from AVHRR data. Int. J.Remote. Sens. 18:1009-1027. Cleugh, H. A., R. Leuning, Q. Z. Mu, and S. W. Running. 2007. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing Environ. 106(3):285-304. Chehbouni, A., Y. Nouvellon, J.P. Lhomme, C. Watts, G. Boulet, Y.H. Kerr, M.S. Moran, D.C. Goodrich. 2001. Estimation of surface sensible heat flux using dual angle observations of radiative surface temperature. Agricultural and Forest Meteorology. 108(1): 55-65. Coll, C. and V. Caselles. 1997. A split-window alogorithm for land surface temperature from advanced very high resolution radiometer data: Validation and algorithm comparison. J. Geophys. Res. 102(14): 16697-16713. Coll, C., V. Caselles, J. A. Sobrino, and E. Volor. 1994 On the atmospheric dependence of the split-window equation for land surface temperature.Int. J. Remote Sens. 15:105–122. Cooper, I. D. and G. Asrar. 1989. Evaluating atmospheric correction models for retrieving surface temperatures from the AVHRR over a tall grass prairie. Remote Sensing Environ. 27(1): 93–102. Dagestad, K.-F. 2004. Mean bias deviation of the Heliosat algorithm for varying cloud properties and sun-ground-satellite geometry. Theor. Appl. Climatol. 79:215-224. Dagestad, K.-F. and J. A. Olseth. 2007. A modified algorithm for calculating the cloud index. Sol. Energy. 81:280-289. Dash, P., F.M. Gottsche, F.S. Olesen, and H. Fischer. 2002. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. Int. J. Remote Sen. 23(13):2563–2594. Diabate, L., G. Moussu, L. Wald. 1989. Description of an operational tool for determining global solar radiation at ground using geostationary satellite images. Sol. Energy. 42(3):201–207. Diabate, L., H. Demarcq, N. Michaud-Regas, L. Wald. 1988. Estimating incident solar radiation at the surface from images of the earth transmitted by geostationary satellites: the Heliosat project. Int. J. Remote Sens. 5:261–278. Dickinson, R.E., A. Henderson Seller, P. J. Kennedy. 1986. Biosphere atmosphere transfer scheme (BATs) for NCAR community climate model. NCAR/TN-275+STR. Dybbroe, A. 2005. NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part I: Algorithm description. J. Appl. Meteorol. 44(1): 39-54. Dybbroe, A., K-G. Karlsson, and A. Thoss, 2005. NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part II: Tuning and validation. J. Appl. Meteor. 44:55-71. Fontoynont, M., D. Dumortier, D. Heinemann, A. Hammer, J. A. Olseth, Skartveit, P. Ineichen, C. Reise, J. Page, J. Roche, H. Beyer, L Wald. 1998. Satel-Light: A www server which provides high quality daylight and solar radiation data for western and central Europe,e. Proc. 9th conference on satellite meteorology and oceanography in Paris, 25-28. May 1998, pp. 434-437 Franca, G.B. and A. P. Cracknell, 1994. Retrieval of land and sea surface temperature using NOAA-11 AVHRR data in northeastern Brazil, Int. J. Remote Sens. 15:1695-1712. Frohlich, C., and R.W. Brusa. 1981. Solar radiation and its variation in time. Sol. Phys. 74: 209-215 Gautier, G., G. Diak, and S. Masse. 1980. A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. J. Appl. Meteorol. 19:1005-1012. Glenn, E.P., A.R. Huete, P.L. Nagler, K.K. Hirschboeck, P. Brown. 2007. Integrating remote sensing and ground method to estimate evapotranspairation. Crit. Rev. Plant Sci. 26:139-168. Granger, R.J. 1997. Comparison of Surface and Satellite-Derived Estimates of Evapotranspiration Using A Feedback Algorithm. In: Kite, G.W., Pietroniro, A., Pultz, T.J. (Eds.), Application of Remote Sensing in Hydrology. Proceedings of the Third International Workshop, NHRI Symposium, No. 17, October, 1996; NASA, Goddard Space Flight Center, Greenbelt, MD, NHRI, pp. 71-81. Haar, V. T. H., and J. S. Ellis. 1987. Determination of the solar energy microclimate of the United States using satellite data, Final Report, NASA Grant NAS5-22372, Colorado State University. Hammer, A., Heinemann, D., Hoyer, C., Kuhlemann, R., Lorenz, E., Mueller, R., Beyer, H.G., 2003. Solar energy assessment using remote sensing technologies. Remote Sens. Environ. 86 (3): 423–432. Hammer, A., T. Degner, D. Heinemann, A. Westerhellweg. 1997. Modifications of the Heliosat method: cloud index improvements, detection of snow cover and results of radiative transfer calculations. Satel-Light Project for the Commission of the European Communities. Carl von Ossietzky University, Oldenburg, Germany. Helleger, P.J.G.J., R. Soppe, C.J. Perry, W.G.M. Bastiaanssen. 2009. Combining remote sensing and economic analysis to support policy decisions that affect water productivity. Irrig. Sci. 27:243-251. Helleger, P.J.G.J., R. Soppe, C.J. Perry, W.G.M. Bastiaanssen. 2010. Remote sensing and economic indicators for supporting water resources management decisions. Water Resour. Manage. 24:2419-2436. Huband, N.D.S., J.L. Monteith. 1986. Radiative surface temperature and energy balance of a wheat canopy: I. comparison of radiative and aerodynamic canopy temperature. Boundary Layer Meteorology. 36:1-17. Illera, P., Fernandez, and A. Perez. 1995. A simple model for the calculation of global solar radiation using geostationary satellite data. Atmos. Res. 39:79–90. Jedlovec, G.J., S. L. Haines, F. J. LaFontaine. 2008. Spatial and Temporal Varying Thresholds for Cloud Detection in GOES Imagery. IEEE Trans. Geosci. Remote Sens. 46( 6):1705 -1717. Jensen. M.E., R.D. Burman, R.G. Allen. 1990. Evapotranspiration and irrigation water requirement. ASCE. pp.332. Kerr, Y.H., J.P. Lagouarde, and J. Imbernon, 1992. Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm, Remote Sensing Environ. 41:197-209. Kijne, Jacob, R. Barker and D. Molden. 2003. Improving Water Productivity in Agriculture: Editors' Overview,in Jacob Kijne and others (Eds.) Water Productivity in Agriculture: Limits and Opportunities forImprovement, Comprehensive Assessment of Water Management in Agriculture. UK: CABI Publishingin Association with International Water Management Institute. Kustas, W. P., and J. M. Norman. 2000. A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces. Agronomy Journal. 92 : 847-854. Li, Z. L. and F. Becker. 1993. Feasibility of land surface temperature and emissivity determination from AVHRR data.Remote Sensing of Environ. 43: 67-85. Li, Z. L., R. L. Tang, Z. M. Wan, Y. Y. Bi, C. H. Zhou, B. H. Tang, G. J. Yan, and X. Y. Zhang. 2009. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors. 9(5): 3801-3853. Liou, K. N. 2002. An introduction to atmospheric radiation, 2nd ed., Academic, San Diego, Calif., 583. McVicar, T.R., T.G. Van Niel, L.T. Li, M.F. Hutchinson, X.M. Mu, Z.H. Liu. 2007.Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J. Hydrol. 338:196-220. Molden, D., R. Sakthivadivel. 1999. Water accounting to assess use and productivity of water. Water Resources Development. 15:55-71. Molden, D.J., T. Oweis,P. Steduto, J. Kijne, M. Hanjra, P. Bindraban, B.A.M. Bouman, S.Cook, O. Erenstein, H. Farnahi, A. Hachum, H. Mahoo, V. Nangia, D. Penden,A. Sikka, P. Silva, H. Turral, A. Upadhyaya, S. Zwart. 2007. Pathways for ncreasing agricultural water productivity. In: Molden, D.J. (Ed.), Water for Food, Water for Life: The Comprehensive Assessment.. Earthscan, London, and IWMI, Sri Lanka. Moradi, I., R. Mueller, B. Alijani and G. A. Kamali. 2009. Evaluation of the Heliosat-II method using daily irradiation data for four stations in Iran. Sol. Energy. 83:150-156. Moussu, G., L. Diabate, D. Obrecht, L. Wald. 1989. A method for the mapping of the apparent ground brightness using visible images from geostationary satellites. Int. J. Remote Sens. 10: 1207–1225. Norman, J. M., W. P. Kustas, and K. S. Humes. 1995. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology. 77(3-4): 263-293. Platnick, S.A., M.D. King, S.A. Ackerman, W.P. Menzel. 2003. The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens. 41(2):459–473. Prabhakara, C. , G. Dalu, and V.G. Kunde, 1974. Estimation of sea temperature from remote sensing in the 11 to 13μm window region. J. Geophy. Res. 79:5039-5044. Prata, A.J. 1994. Land surface temperature from the advanced very high resolution radiometer and the along-track scanning radiometer. 2. Experimental results and validation of AVHRR algorithms. J. Geophy. Res. 99:13025-13058. Price, J. C. 1984. Land surface temperature measurements from the split window channels of the NOAA 7 AVHRR. J. Geophys. Res. 89:7231-7237. Price, J.C. 1983. Estmated surface temperature from satellite thermal infrared data-a simple formulation for the atmospheric effect. Remote Sensing Environ. 13 :353-361. Rigollier, C., and Lucien Wald. 1998. Towards operational mapping of solar radiation from Meteosat images. In: Proceedings of the EARSeL Conference: operational remote sensing for sustainable development. May 11–14 1998. Enschede, The Netherlands. Rigollier, C., M. Lefevre and L. Wald. 2004. The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol. Energy. 77:159-169. Roerink, G. J., Z. Su, and M. Menenti. 2000. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance, Physics and Chemistry of the Earth Part B-Hydrology Oceans and Atmosphere. 25(2) :147-157. Schillings, C., H. Mannstein, R. Meyer. 2004. Operational method for deriving high resolution direct normal irradiance from satellite data. Sol. Energy. 76:475–484. Sellers, P.J., L. Bounoua, G.J. Collatz. 1996. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science. 271:1402-1406. Shuttleworth, W.J., J.S. Wallace. 1985. Evaporation from sparse crops-an energy combination theory. Quarterly Journal of the Royal Meteorological Society. 111:839-855. Sobrino, J.A., Z.-L. Li, M. P. Stoll. 1993. Impact of the atmospheric transmittance and total water vapor content in the algorithms for estimating satellite sea surface temperatures. IEEE Trans. Geosci. Remote Sens. 31:946 – 952. Sobrino, J.A., Z.L. Li, M.P. Stoll, and F. Becker, 1994. Improvements in the split-window technique for land surface temperature determination. IEEE Trans. Geosci. Remote Sens. 32(2):243-253. Steduto, P., T.C. Hsiao, E. Fereres. 2007. On the conservative behavior of biomass water productivity. Irrig. Sci 25:189–207 Tanahashi, S. H. Kawamura, T. Matsuura, T. Takahashi and H. Yusa. 2001. A system to distribute satellite incident solar radiation in real-time. Remote Sensing Environ. 75:412-422. Tarpley, J. D. 1979. Estimating incident solar radiation at the surface from geostationary satellite data. J. Appl. Meteor. 18:1172–1181. Ulivieri, C.,M. M. Castronouvo, R. Francioni, and A. Cardillo. 1992. A SW algorithm for estimating land surface temperature from satellites. Adv. Space Res. 14:59–65. Wan, Z., and J. Dozier. 1996. A generalized split-window algorithm for retrieving land surface temperature measurement from space, IEEE Trans. Geosci. Remote Sens., 34:892 – 905. Wark, D.Q., G. Yamamoto, J.H. lienesch. 1962. Methods of estimating infrared flux and surface temperature from meteorological satellites. J. of Atm. Science. 19:369-384. Wielicki, B. and L. Parker, 1992. On the determination of cloud cover from satellite sensors: The effect of sensor spatial resolution. J. Geophy. Res. 97(12) :12799-12823. Xu, C. Y. and Singh, V. P. 2000. Evaluation and Generalization of Radiation-based Methods for Calculating Evaporation. Hydrolog. Processes. 14:339–349. Zwart, S.J., W.G.M. Bastiaanssen. 2007. SEBAL for detecting spatial variation of water productivity and scope for improvement in eight irrigated wheat systems. Agric. Water Manage. 89:287-296.
摘要: Evapotranspiration (ET) plays very important role in water cycle, and determines the fluxes of water and heat transfer on the earth surface. Quantitative estimation of ET is the basis in estimating regional water consumption, soil water transport, crop production, water productivity and water resources planning. MTSAT-2 satellite image were used in this study to estimate incident solar radiation, land surface temperature (LST), potential evapotranspiration and crop water productivity (CWP) in Taiwan. The incident solar radiation estimated by Heliosat model showed good agreement with observed data, with mean bias error (MBE) <10%, at southwesten part of Taiwan, and <20% for other areas. The estimation of LST showed good agreement (MBE < 2℃) in clear sky situations. But the incomplete removal of cloud contamination rendered poor agreement under cloudy situations. The potential evapotranspiration estimated using derived incident solar radiation gave a MBE of about 10% to meteorological stations at Taipei, Hsinchu, Taichung, Chiayi, Hualien, Taitung. Finally, the estimation of rice crop CWP during 2008-2011 in Southwestern Taiwan, indicated that Southern Yunlin and Chiayi was the best, Northern Yunlin were the worst. The estimation of incoming solar radiation, potential evapotranspiration(PET) and crop water productivity(CWP) could provide useful information for environmental ecological researches and water sources planning.
蒸發散量(ET)為水循環中關鍵的一環,決定了地表的水、熱傳輸與平衡。對其進行估算可作為區域耗水、土壤水分移動、作物產量與水分利用效率等水資源利用與規畫的基礎。本研究利用氣象衛星(MTSAT-2)影像依序進行台灣地區日射量、地表溫度、蒸發散量、水稻的作物水分收產力的推估。日射量推估結果顯示對台灣地區西南部台中、嘉義、恆春等測站平均偏差誤差(MBE)小於10%,其他地區平均偏差誤差(MBE)也小於20%。地表溫度推估結果在完全無雲情況下可有良好結果,平均誤差(MBE)小於2℃。但因MTSAT-2影像空間尺度不佳,研究所使用之濾雲法無法把由雲像元完全去除,造成整體結果不佳。若單獨使用所推估之日射量推估潛在蒸發散量,顯示對台北、新竹、台中、嘉義、花蓮、台東六測站的平均偏差誤差(MBE)皆在10%以內,此方法可有效推估台灣平地測站的潛在蒸發散量,但山區並無法準確推估。研究最後估算2008-2011年彰雲嘉南區域兩期作水稻的作物水分生產力,結果顯示以雲林南部與嘉義的水稻水分生產力最高,而雲林北部區域水分生產力最差。本研究提供了台灣大範圍逐時的日射量、潛在蒸發散量、作物水分生產力的分布與變化,可以滿足環境生態研究與水資源利用規劃等研究參考與應用。
URI: http://hdl.handle.net/11455/90130
文章公開時間: 2014-01-21
顯示於類別:土壤環境科學系

文件中的檔案:
檔案 大小格式 
nchu-103-7099039006-1.pdf9.25 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。