請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/90143
標題: Study of Electrochemical Reactivity of Phenolic Compounds Affected by Layer Charge of Clay Minerals
黏土礦物層面電荷對酚類化合物電化學反應影響之研究
作者: Chia-Ying Chu
朱家瑩
關鍵字: Clay minerals
Layer charge
Electroanalysis
黏土礦物
層面電荷
電化學分析
引用: 朱家瑩、陳鴻基、曾志明。2013。以黏粒修飾電極探討對硝基苯酚的電化學反應。台灣農學會報14:607-630。 姚開元、陳鴻基、曾志明。2009。不同黏土礦物修飾鍍銅電極之電化學分析與多巴胺之偵測。台灣農學會報 10:364-379。 莊作權、陳鴻基。1994。膨脹性黏土礦物表面電荷的非均勻性對銨固定作用的影響。中國農業化學會誌 32:522-532。 陳品誌。1997。利用黏粒修飾電極偵測尿酸及多巴胺之研究。國立中興大學化學研究所碩士論文。 陳鴻基、李國欽、莊作權。1995。利用黏粒修飾電極探討巴拉刈在黏土礦物膜層中的移動性。中華民國雜草學會會刊 16:1-13。 陳鴻基、曾志明。2003a。銅錳離子的吸附對巴拉刈在黏粒膜層中電化學活性的影響。中華農學會報4:429-446。 陳鴻基、曾志明。2003b。銅錳離子的競爭吸附對巴拉刈在黏粒膜層中移動性的影響。興大農林學報52:1-19。 陳鴻基、楊庭豪、曾志明。2003。利用方波伏安法探討不同離子對巴拉刈在土壤中移動的影響。興大農林學報52:19-31。 曾綉丹、陳鴻基、曾志明。2012a。以黏粒修飾電極法探討對苯二酚的電化學反應。台灣農學會報13:84-106。 曾綉丹、陳鴻基、曾志明。2012b。巴拉刈在黏粒修飾電極對鄰苯二酚電化學分析上的影響。台灣農學會報 13:595-616。 楊庭豪、陳鴻基、曾志明。2003。利用網版印刷碳電極探討巴拉刈在黏土礦物表面上的鍵結。土壤與環境6:193-206。 楊庭豪、陳鴻基、曾志明。2006。以電化學方法探討堆肥與不同離子處理對巴拉刈在土壤中移動性的影響。中華農學會報 7:363-386。 鍾協訓。2002。網版印刷電極在分析化學上的應用與發展。國立中興大學化學研究所碩士論文。 Abollino, O., M. Aceto, M. Malandrino, C. Sarzanini, and E. Mentasti. 2003. Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res. 37: 1619-1627. Abu Rabi-Stanković, A., A. Milutinović-Nikolić, N. Jović-Jovičić, P. Banković, M. Žunić, Z. Mojović, and D. Jovanović. 2012. p-Nitrophenol electro-oxidation on a BTMA+-bentonite-modified electrode. Clays Clay Miner. 60: 291-299. Abu Rabi-Stanković, A., Z. Mojović , A. Milutinović-Nikolić, N. Jović-Jovičić, P. Banković, M. Žunić, and D. Jovanović. 2013. Electrooxidation of p-nitrophenol on organobentonite modified electrodes. Appl. Clay Sci. 77-78: 61-67. Adebajo, M.O., R.L. Forst, J.T. Kloprogge, O. Carmody, and S. Kokot. 2003 Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J. Porous Mater. 10: 159-170. Alizadeh, T., M.R. Ganjali, P. Norouzi, M. Zare, and A. Zeraatker. 2009. A novel high selective and sensitive para-nitrophenol voltammetric sensor, based on a molecularly imprinted polymer-carbon paste electrode. Talanta 79: 1197-1203. Alther, G. 2006. Contam. Soils (Contaminated Soil, Sediments and Water). 10: 227-237. Anu Prathap, M.U., B. Satpati, and R. Srivastava. 2013. Facile preparation of polyaniline/MnO2 nanofibers and its electrochemical application in the simultaneous determination of catechol, hydroquinone, and resorcinol. Sens. Actuators B 186: 67-77. Arguello, J., V.L. Leidens, H.A. Magosso, R.R. Ramos, and Y. Gushikem. Simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid by methylene blue adsorbed on a phosphorylated zirconia-silica composite electrode. Electrochim. Acta. 54: 560-565. Banat, F.A., B. Al-Bashir, S. Al-Asheh, and O. Hayajneh. 2000. Adsorption of phenol by bentonite. Environ. Pollut. 107: 391-398. Bard, A.J., and L.R. Faulkner. 2001. Electrochem. Methods. 2nd ed. New York: John Wiley & Sons. pp. 226-260. Baskar, S., C.W. Liao, J.L. Chang, and J.M. Zen. 2013. Electrochemical synthesis of electroactive poly(melamine) with mechanistic explanation and it's applicability to functionalize carbon surface to prepare nanotube-nanoparticles hybrid. Electrochim. Acta 88:1-5. Betega de Paiva, L., A.R. Morales, and F.R. Valenzuela Diaz. 2008. Organoclays: properties, preparation and applications. Appl. Clay Sci. 42: 8-24. Cao, X., L. Luo, Y. Ding, X. Zou, and R. Bian. 2008 Electrochemical methods for simultaneous determination of dopamine and ascorbic acid using cetylpyridine bromide/chitosan composite film-modified glassy carbon electrode. Sens. Actuators, B. 129: 941-946. Chen, J.C., A.S. Kumar, H.H. Chung, S.H. Chien, M.C. Kuo, and J.M. Zen. 2006. An enzymeless electrochemical sensors for the selective determination of creatinine in human urine. Sens. Actuators B 115: 473-480. Chen, J.C., H.H. Chung, C.T. Hsu, D.M. Tsai, A.S. Kumar, and J.M. Zen. 2005. A disposable single-use electrochemical sensor for the detection of uric acid in human whole blood. Sens. Actuat, B. 110: 364-369. Chu, L., L. Han, and X. Zhang. 2011. Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode. J. Appl. Electrochem. 41: 687-694. Deng, Y., A.L. Barrientos Velazquez, F. Billes, and J. B. Dixon. 2010. Bonding mechanisms between aflatoxin B1 and smectite. Appl. Clay Sci. 50: 92-98. Diaz, T.G., A.G. Cabanillas, and F. Salinas. 2000. Square-wave and differemtial pulse oxidative voltammetric determination of diquat and paraquat in alkaline medium. Electroanalysis 12: 616-621. Dong, S., and J. Ding. 1988. Electrochemical behavior of potassium ferrycyanide, hydroqionone, catechol and p-aminophenol at polypyrrole film electrodes. Synthetic Metals. 24: 273-281. Falaras, P., and F. Lezou 1998. Electrochemical behavior of acid activated montmorillonite modified electrodes. J. electroanal. Chem. 455: 169-179. Falat, L., and H.Y. Cheng. 1982. Voltammetric differentiation of ascorbic acid and dopamine at an electrochemically treated graphite/epoxy electrode. Anal. Chem. 54: 2108-2111. Fitch, A. 1990. Clay modified electrodes : a review. Clay and Clay Miner. 38: 319-400. Fitch, A., A. Agyeman, A. Wagdy, and Z. Terranova. 2011. Electroactive planar waveguide studies of Ru(bpy)32+ intercalated in a thin clay film: I. Transport and electrochemical phenomena. Langmuir 27: 452-460. Flaig, W., H. Beutdspacher, and E. Rietz. 1975. Chemical composition and physical properties of humic substance. In 'Soil Components' , ed. J. E. Gieseking, pp. 1-211. New York: Springer-Verlag. Gao, L., and S. Ren. 2010. Prediction of nitrophenol-type compounds using chemometrics and spectrophotometry. Anal. Biochem. 405: 184-191. Gorski, C.A., L. Klupfel, A. Voegelin, M. Sander, and T.B. Hofstetter. 2012b. Redox properties of structural Fe in clay minerals. II. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1. Environ. Sci. Technol. 46: 9369-9377. Gorski, C.A., M. Aeschbacher, D. Soltermann, A. Voegelin, B. Baeyens, M. Marques, T.B. Hofstetter, and M. Sander. 2012a. Redox properties of structural Fe in clay minerals. I. Electrochemical quantification of electron-donating and –accepting capacities of smectites. Environ. Sci. Technol. 46: 9360-9368. Goyal, G.N., and S.P. Singh. 2008. Simultaneous voltammetric determination of dopamine and adenosine using a single walled carbon nanotube-modified glassy carbon electrode. Carbon. 46: 1556-1562. Haider, K., L.R. Frederick, and W. Flaig. Reactions between amino acid compounds and phenols during oxidation. Palnt Soil 22: 49-64. Ho, C.T., C.Y. Lee, and M.T. Huang. Phenolic compounds in food and their effects on health I, American Chemical Society, Washington, DC, 1992. Honeychunch, K.C., and J.P. Hart. 2007. Voltammetric behavior of p-nitrophenol and it's trace determination in human urine by liquid chromatography with a dual reductive mode electrochemical detection system. Electroanalysis 21: 2176-2184. Hori, Y., R. Takahashi, Y. Yoshinami, and A. Murata. 1997. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101: 7075-7081. Huang, H.M., and C.H. Lin. 2005. Method plug assisted sweeping-micellar electrokinetic chromatography for the determination of dopamine in urine by violet light emitting diode-induced fluorescence detection. J. Chromatogr. 816: 113-119. Huang, P.M. 2008. Soil physical-chemical-biological interfacial interactions: An overview. In 'Soil mineral-Microbe-Organic Interactions Theories and Applications', eds. Q. Huang, P. M. Huang and A. Violante, pp. 3-37. New York: Springer-Verlag Berlin Heidelberg. Jiao, X.X., H.Q. Luo, and N.B. Li. 2013. Fabrication of grapheme-gold nanocomposites by electrochemical co-reduction and their electrocatalytic activity toward 4-nitrophenol oxidation. J. Electroanal. Chem. 691: 83-89. Komadel, P., J. Madejova, and J.W. Stucki. 2006. Structural Fe(III) reduction in smectites. Appl. Clay Sci. 34: 88-94. Kong, Y., X. Chen, W. Wang, and Z. Chen. 2011a. A novel palygorskite-modified carbon paste amperometric sensor for catechol determination. Anal. Chim. Acta 688: 203-207. Kong, Y., X.H. Chen, C. Yao, M.J. Ma, and Z.D. Chen. 2011b. A voltammetric sensor based on electrochemically activated glassy carbon electrode for simultaneous determination of hydroquinone and catechol. Anal. Methods 3: 2121-2126. Kong, Y., X.H. Chen, J.H. Ni, S.P. Yao, W.C. Wang, Z.Y. Luo, and Z.D. Chen. 2010. Palygorskite-expanded graphite electrodes for catalytic electro-oxidation of phenol. Appl. Clay Sci. 49: 64-68. Kong, Y., Y.Y. Xu, H.H. Mao, C. Yao, and X.F. Ding. 2012. Expanded graphite modified with intercalated montmorillonite for the electrochemical determination of catechol. J. Electroanal. Chem. 669: 1-5. Kowalska, M., H. Guler, and D.L. Cocke. 1994. Interactions of clay minerals with organic pollutants. Sci. Total Environ. 141: 223-240. Kumar, A.S., S. Sornambikai, S. Venkatesan, J.L. Chang, and J.M. Zen. 2012. Tetracycline immobilization as hydroquinone derivative at dissolved oxygen reduction potential on multiwalled carbon nanotube. J. Electrochem. Soc. 159: G137-G145. Kumar, A.S., S. Sornambikai. P. Gayathri and J.M. Zen. 2010. Selective covalent immobilization of catechol on activated carbon electrodes. J. Electroanal. Chem. 641: 131-135. Lee, S.G., J.I. Choi, W. Koh, and S.S. Jang. 2013. Adsorption of β-D-glucose and cellobiose on kaolinite surfaces: Density functional theory (DFT) approach. Appl. Clay Sci. 71: 73-81. Li, M., Y.T. Li, D.W. Li, and Y.T. Long. 2012. Recent developments and applications of screen-printed electrodes in environmental assays-A review. Anal. Chim. Acta 734: 31-44. Liu, X.D., E.J. Meijer, X.C. Lu, and R. C. Wang. 2012. First-principles molecular dynamics insight into Fe2+ complexes absorbed on edge surfaces of clay minerals. Clays Clay Miner. 60: 341-347. Liu, Z., J. Du, C. Qiu, L. Huang, H. Ma, D. Shen, and Y. Ding. 2009. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem. Commun. 11: 1365-1368. Lourengo, E.L. B., A. Ferreira, E. Pinto, M. Yonamine, and S.H.P. Farsky. 2006. On-fiber derivatization of SPME extracts of phenol, hydroquinone and catechol with GC-MS detection. Chromotographia 63: 175-179. Luo, L.Q., X.L. Zou, Y.P. Ding, and Q.S. Wu. 2008. Derivative voltammetric direct simultaneous determination of nitrophenol isomers at carbon nanotube modified electrode. Sens. Actuators B 135: 61-65. Macha, S.M., and A. Fitch. 1998. Clay as architectural units at modified-electrodes. Mikrochim. Acta. 128: 1-18. Madrakian, T., A. Afkhami, I. Khalafi, and M. Mohammad-nejad. 2006. Spectrophotometric determination of catecholamines based on their oxidation reaction followed by coupling with 4-aminobenzoic acid. J. Brazil. Chem. Soc. 17: 1259-1265. Manisankar, P., G. Selvanathan, and C. Vedhi. 2006. Determination of pesticides using heteropolyacid montmorillonite clay-modified electrode with surfactant. Talanta 68: 686-692. March, J. 1992. Advanced Organic Chemistry. 4th ed. John Wiley & Sons. New York. Martin, J.P., and K. Haider. 1980. Microbial degradation and stabilization of 14C-labeled lignins, phenols and phenolic polymers in relation to soil humus formation. In 'Lignin Biochemistry: Microbiology, Chemistry and Potential Applications', ed. T. K. Kirk, T. Higuchi and H. Chang, pp. 77-100. Boca Ration, Florida: CRC Press, Inc. Metters, J.P., R.O. Kadara, and C.E. Banks. 2011. New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 136: 1067-1076. Michalkova, A., T.L. Robinson, and J. Leszczynski. 2011. Adsorption of thymine and uracil on 1:1 clay mineral surfaces: Comprehensive ab initio study on influence of sodium cation and water. Phys. Chem. Chem. Phys. 13: 7862-7881. Mott, H.V., and W.J. Weber. 1991. Factors influencing organic contaminant diffusivities in soil-bentonite cutoff barriers. Environ. Sci. Technol. 25:1708-1715. Mousty, C. 2004. Sensors and biosensors based on clay-modified electrodes-new trends. Appl. Clay Sci. 27: 159-177. Mousty, C. 2010. Biosensing applications of clay-modified electrodes: A review. Anal. Bioanal. Chem. 396: 315–325. Navratilova, Z., and P. Kula. 2003. Clay modified electrodes: present application and prospect. Electroanalysis. 15: 837-846. Nelson, T.E. 2011. Electrochemical studies of quinone on clay-modified platinum electrodes. Master Thesis, Chicago: Department of Chemistry, Loyola University Chicago, Illinois. Oturan, M.A., J. Peiroten, P. Chartrin, and A.J. Acher. 2000. Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environ. Sci. Technol. 34: 3474-3479. Oyama, N., and F.C. Anson. 1986. Catalysis of the electroreduction of hydrogen peroxide by montmorillonite clay coatings on graphite electrodes. J. Electroanal. Chem. 199: 467-470. Pecorari, M., and P. Bianco. 1998. Ion-exchanged voltammetry of cationic species at membrance clay-modified electrodes. Electroanalysis. 10: 181-186. Pinnavaia, T.J., P.L. Hall, S.S. Cady, and M.M. Mortland. 1974. Aromatic radical cation formation on the intracrystal surface of transition metal layer lattice silicates. J. Phys. Chem. 78: 994-999. Portaccio, M., D. Di Tuoro, F. Arduini, M. Lepore, D.G. Mita, N. Diano, L. Mita, and D. Moscone. 2010. A thionine-modified carbon paste amperometric biosensor for catechol and bisphenol A determination. Biosens. Bioelectron. 25: 2003-2008. Prasad, K.S., G. Muthuraman, and J.M. Zen. 2008. The role of oxygen functionalities and edge plane sites on screen-printed carbon electrodes for simultaneous determination of dopamine, uric acid and ascorbic acid. Electrochem. Commun. 10: 559-563. Prasad, K.S., J.C. Chen, C. Ay, and J.M. Zen. 2007. Mediatorless catalytic oxidation of NADH at a disposable electrochemical sensor. Sens. Actuat, B. 123: 715-719. Qiu, J. and G. Villemure. 1995. Anionic clay-modified electrodes: electrochemical activity of nickel (II) sites in layered couble hydroxide films. J. Electroanal. Chem. 395: 159-166. Qiu, J. and G. Villemure. 1996. Anionic clay modified electrodes: electron transfer mediated by electroactive nickel. Cobalt or manganese sites in layered double hydroxides films. J. Electroanal. Chem. 428: 165-172. Shervedani, R.K., and H.A. Alinajafi-Najafabadi. 2011. Electrochemical determination of dopamine on glassy carbon electrode modified by using nanostructure ruthenium oxide hexacyanoferrate/ruthenium hexacyanoferrate thin film. Electrochemical Int. J. Electrochem. 2011: 1-11. Shervedani, R.K., S.M. Siadat-Barzoki, and M. Bagherzadeh. 2010. Electrochemical characterization of gold 6-amino-2-merca- ptobenzothiazole self-assembled monolayer for dopamine detection in pharmaceutical samples. Electroanalysis. 22: 969-977. Skoubris, E.N., G.D. Chryssikos, G.E. Christidis, and V. Gionis. 2013. Structural characterization of reduced-charge montmorillonites. Evidence based on FTIR spectroscopy, thermal behavior, and layer-charge systematics. Clays Clay Miner. 61: 83-97. Stevenson, F.J. 1994. Humus Chemistry : Genesis, composition, reactions. New York: John Wiley & Sons. Stucki, J.W., G.W. Bailey, and H. Gan. 1996. Oxidation-reduction mechanisms in iron-bearing phyllosilicates. Appl. Clay Sci. 10: 417-430. Stucki, J.W., K. Lee, L. Zhang, and R.A. Larson. 2002. Effects of iron oxidation state on the surface and structural properties of smectites. Pure Appl. Chem. 74:2145-2158. Sujaritvanichpong, S., K. Aoki, K. Tokuda, and H. Matsuda. 1986. Electrochemical behavior of dopamine at carbon fiber electrodes. J. Electroanal. Chem. 198: 195-203. Švegal, I.G., M. Kolaz, B. Ogorevc, and B. Pihhar. 1998. Vermiculite clay mineral as an effective carbon paste electrode modifier for the preconcentration and voltammetric determination of Hg(II) and Ag(II) ions. Fresenius J. Anal. Chem. 361: 358-362. Swaby, R.J., and J.N. Labbed. 1962. Chemical nature, microbial resistance, and origin of soil humus. pp. 197-202. New Zealand: Int. Soc. Soil Sci. Trans. Comm. IV. Walcarius, A., and L. Lamberts. 1996. Square wave voltammetric determination of paraquat and diquat in aqueous solution. J. Electroanal. Chem. 406: 59-68. Wang, M.C., and P.M. Huang. 1986. Humic macromolecule interlayering in nontronite through interaction with phenol monomers. Nature. 323: 529-531. Wang, M.C., and P.M. Huang. 1989. Catalytic power of nontronite, kaolinite and quartz and their reaction sites in the formation of hydroquinone-derived polymers. Appl. Clay Sci. 4: 43-57. Wang, T.S.C., P.M. Huang, C.H. Chou, and J.H. Cheng. 1986. The role of soil minerals in the abiotic polymerization of phenolic compounds and formation of humic substances. In 'Interactions of Soil Minerals with Natural Organics and Microbes' , eds. P.M. Huang and M. Schnitzer. Madison: Soil Sci. Soc. Am., Inc. pp. 251-281. Wightman, R.M., E.C. Paok, S. Borman, and M.A. Dayton. 1978. Evaluation of the basal plane of pyrolytic graphite as and electrochemical detector for liquid chromatography. Anal. Chem. 50: 1410-1414. Xiang, Y., and G. Villemure. 1992. Electron transport in clay-modified electrodes: study of electron transfer between electrochemically oxidized tris (2,2'-bipyridyl) iron cations and clay structural iron (II) sites. Can. J. Chem. 70: 1833-1837. Xiang, Y., and G. Villemure. 1995. Electrodes modified with synthetic clay minerals: evidence of direct electron transfer from structural iron sites in the clay lattice. J. Electrom. Chem. 381: 21-27. Xiang, Y., and G. Villemure. 1996. Electrodes modified with synthetic clay minerals: electron transfer between absorbed tris (2,2'-bipyridyl) metal cations and electroactive cobaltcenters in synthetic smectite. J. Phys. Chem. 100: 7143-7147. Xiao, J. and G. Villemure. 1998. Preparation, characterization and electrochemistry of synthetic copper clays. Clays Clay Miner. 46: 195-203. Xu, X., S. Zhang, H. Chen, and J. Kong. 2009. Integration of electrochemistry in micro-total analysis systems for biochemical assays: recent developments. Talanta 80: 8-18. Yang, C.C., A.S. Kumar, and J.M. Zen. 2005. Precise blood lead analysis using a combined internal standard and standard addition approach with disposable screen-printed electrodes. Anal. Biochem. 338: 278-283. Yang, S.M., Y.M. Li, X.M. Jiang, Z.C. Chen, and X.F. Lin. 2006. Horseradish peroxidase biosensor based on layer-by-layer technique for the determination of phenolic compounds. Sen. Actuat. B 114: 774-780. Zen, J.M., A.S. Kumar, and D.M. Tsai. 2003 Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15: 1073-1087. Zen, J.M., and A.S. Kumar. 2004. The prospects of clay mineral electrodes. Anal. Chem. 76: 205A-211A. Zen, J.M., and P.J. Chen. 1997. An ultrasensitive voltammetric method for dopamine and catechol detection using clay-modified electrodes. Electroanal. 10: 12-15. Zen, J.M., C.W. Lo, and P.J. Chen. 1997. An enzymatic clay-modified electrode for aerobic glucose monitoring with dopamine as mediator. Anal. Chem. 69: 1669-1673. Zen, J.M., H.H. Chung, and A.S. Kumar. 2002. Selective detection of o-diphenols on copper-plated screen-printed electrodes. Anal. Chem. 74: 1202-1206. Zen, J.M., Y.Y. Lai, H.H. Yang, and A. Senthil Kumar. 2002.Multianalyte sensor for the simultaneous determination of hypoxanthine, xanthine and uric acid based on a preanodized nontronite-coated screen-printed electrode. Sens. Actuat, B. 84: 237-244. Zhao, G., M. Li, Z. Hu, H. Li, and T. Cao. 2006. Electrocatalytic redox of hydroquinone by two forms of L-proline. J. Mol. Catal. A.: Chem. 255: 86-91.
摘要: Phenolic compounds are common compounds of soil and that are catalyzed and transformed by clay minerals to soil humus. The process plays a significant role in soil pedogenesis, the physical, chemical and biological properties of soil and soil fertility. This study investigated the electrochemical behavior of p-nitrophenol, benzenediol and dopamine at different clay-modified screen-printed carbon electrodes coupling with electrochemical method, and study the different electrochemical behavior of phenolic compounds affected by different layer charge of clay minerals. The results indicated the reductive peak current of p-nitrophenol from HOC6H4NO2 to HOC6H4NHOH (R1) was 204 μA for SWy-1 (the highest) and 146 μA for KGa-1 (smallest) among the six clay-modified electrodes studied. Even larger reductive and oxidative peak currents can be detected at the clays modified on 'preanodized' screen-printed carbon electrodes (SPCE*) due to the hydrogen bonding between oxide film and basal surface of tetrahedral sheet and octahedral sheet. The highest reductive peak current (329 μA) was detected at the SHCa-1 SPCE* and next of 317 μA at the SWy-1 SPCE*. Paraquat might affect the redox behavior of p-nitrophenol to cause a change of peak shape and current for reductive peak current without oxidative peak currents. The effect of SPCE* was apparently different from that of paraquat since the oxidative power of paraquat on the redox of p-nitrophenol is different from that of the oxide film at the SPCE*. The results indicated that two reductive peaks (R1, R2) and two oxidative peaks (O1, O2) were observed at all six clay-modified SPCEs with higher R1 peak current from SHCa-1, SWy-1 and SWa-1. Preanodization of SPCE (SPCE*) further makes an increase in the peak currents of R2 and O2. The differences in cyclic voltammograms at six clay-modified SPCEs for hydroquinone and catechol was originated from different bonding sites of two hydroxyl groups on the benzene. The peak shape of R2 in respective solution was broader than those of detected at six clay-modified SPCEs and different reduction potentials and peak currents between p-benzoquinone and o-benzoquinone were affected by different layer charges of clay minerals. The results also indicated the highest peak currents of R1 and O1 (100 μA and 61.9 μA) could be determined by SWy-1 SPCE, and the highest peak currents of R2 (48.5 μA) was SWa-1 SPCE and the highest O2 (61.4 μA) was SHCa-1 SPCE at six clay-modified electrodes. All peak currents of six clay-modified SPCE* were more than that of six clay-modified SPCE due to the oxide film on the electrode surface could improve the transference of second electron more than that of first electron. The peak currents of R2 and O2 for coexist solution were higher than the peak currents of R1 and O1 detected by six clay-modified SPCE*s. The different electrochemical behaviors of phenolic compounds with different structure were affected by different crystal structures and layer charges of clay minerals, and we could understand the interaction between phenolic compounds and clay minerals using different clay-modified electrodes coupling cyclic voltammetry.
酚類化合物普遍存在於土壤中,黏土礦物對酚類化合物的催化聚合與轉化反應常是土壤腐植質先驅物形成的關鍵,其對土壤的形成、物理化性質、生物性質及土壤肥力之影響扮演重要的角色。本論文研究目的以不同黏土礦物修飾網版印刷碳電極 (SPCE) 搭配電化學分析對對硝基苯酚、苯二酚及多巴胺等進行電化學分析,以探討黏土礦物層面電荷對這些化合物在電化學反應行為上的差異,進一步了解其間的交互作用關係。試驗結果指出,六種黏粒修飾SPCE對對硝基苯酚由HOC6H4NO2還原到HOC6H4NHOH所測到的R1波峰電流量以SWy-1為最大 (204 μA),而以KGa-1為最小 (146 μA);六種黏粒修飾預氧化網版印刷碳電極 (SPCE*) 可測到更大的R1還原波峰及氧化波峰電流量。由於SPCE* 表面氧化層膜的羰基和羥基會與黏土礦物四面體層及八面體層表面產生氫鍵,其影響黏土礦物的電場效應與對硝基苯酚的極化,導致所測得之R1波峰形狀較為尖銳且波峰電流量較大,其中以SHCa-1最大 (329 μA),其次是SWy-1 (317 μA)。有巴拉刈存在時,六種黏粒修飾SPCE可測得R1還原波峰,但無法偵測到氧化波峰電流量,顯示巴拉刈的氧化力在對硝基苯酚氧化還原反應上的影響明顯與SPCE* 表面氧化層膜對對硝基苯酚之作用機制不同。 六種黏粒修飾SPCE對對苯二酚均能測到兩個還原波峰 (R1、R2) 與兩個氧化波峰 (O1、O2),且其中以2:1型膨潤石類 (SHCa-1、SWy-1及SWa-1) 測到的R1波峰電流量較大。SPCE經預氧化處理後 (SPCE*) 再修飾六種黏粒對對苯二酚測到的氧化還原波峰電流量均有明顯增大的現象,且其中以R2和O2氧化還原波峰對增大及波峰電位偏移的情形較為明顯。由於兩個羥基在苯環之鍵結位置上的不同,使六種黏粒修飾SPCE對對苯二酚與鄰苯二酚所測到的氧化還原波峰形狀和電流量不同,且其對兩種苯二酚共存溶液測到的R2波峰形狀比兩種苯二酚各別測到的R2波峰形狀更為駝形,且受到不同黏土礦物層面電荷所影響,所以在偵測到的循環伏安圖與波峰電流量上會不同。 六種黏粒修飾網版印刷碳電極對多巴胺進行偵測,結果顯示SWy-1 SPCE所測到的R1、O1氧化還原波峰對電流量為最大 (100 μA、61.9 μA),R2還原波峰電流量則以SWa-1 SPCE所測得的電流量最大 (48.5 μA),而O2氧化波峰電流量則以SHCa-1 SPCE為最大 (61.4 μA)。六種黏粒修飾預氧化網版印刷碳電極所偵測的電流量都明顯大於六種黏粒修飾網版印刷碳電極,且預氧化後電極表面上產生的氧化層促進第二莫耳電子的轉移大於第一莫耳的電子轉移。六種黏粒修飾預氧化電極對多巴胺與鄰苯二酚共存溶液偵測結果也顯示,R2、O2氧化還原波峰電流量均大於R1、O1氧化還原波峰電流量。不同結晶構造與層面電荷之黏土礦物確實會影響不同化學結構之酚類化合物在電化學行為上的表現,且利用黏粒修飾電極搭配循環伏安法的電化學分析能夠探討了解不同酚類化合物與黏土礦物間的交互作用關係。
URI: http://hdl.handle.net/11455/90143
文章公開時間: 2014-07-14
顯示於類別:土壤環境科學系

文件中的檔案:
檔案 描述 大小格式 
nchu-103-7101039011-1.pdf2.6 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。