請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/90148
標題: Characterization of novel pigmented-bacteria and mutagenic impact of ethyl methanesulfonate on polyphasic taxonomic markers
分析新穎產色素海洋細菌的特性及乙基甲磺酸鹽對其'多相分類標記'的致突變性
作者: Mariyam Shahina
瑪 麗 央
關鍵字: Robertkochia marina
myxol
Cryomorphaceae
mutagenesis
BOX-profile
pigment
16S rRNA gene
蝦紅素
Robertkochia marina
藍藻葉黃素醇
Cryomorphaceae
致突變作用
BOX-圖譜
色素
16S rRNA基因
引用: Agarwal, S., and A.V. Rao. 2000. Carotenoids and chronic diseases. Drug Metabol. Drug Interact. 17:189–210. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410. An, G.H., and E.S. Choi. 2003. Preparation of the red yeast, Xanthophyllomyces dendrorhous, as feed additive with increased availability of astaxanthin. Biotechnol. Lett. 25:767–771. An, G.-H., J.-Y. Song, K.-S. Chang, B.-D. Lee, H.-S. Chae, and B.-C. Jang. 2004. Pigmentation and delayed oxidation of broiler chickens by the red carotenoid, astaxanthin, from chemical synthesis and the yeast, Xanthophyllomyces dendrorhous. Asian Austral. J. Anim. 17:1309–1314. Armstrong, G.A. 1997. Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu. Rev. Microbiol. 51:629–659. Asker, D., and K. Isaka. 2006. Production of astaxanthin by microorganisms. Patent JP340676A Asker, D., T. Beppu, and K. Ueda. 2007a. Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst. Appl. Microbiol. 30:291–296. Asker, D., T. Beppu, and K. Ueda. 2007b. Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol. Lett. 273:140–148. Asker, D., T. Beppu, and K. Ueda. 2007c. Zeaxanthinibacter enoshimensis gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae, isolated from seawater off Enoshima Island, Japan. Int. J. Syst. Evol. Microbiol. 57:837–843. Asker, D., T. Beppu, and K. Ueda. 2008. Nubsella zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Sphingobacteriaceae isolated from freshwater. Int. J. Syst. Evol. Microbiol. 58:601–606. Asker, D., S. Amano, K. Morita, K. Tamura, S. Sakuda, N. Kikuchi, K. Furihata, H. Matsufuji, T. Beppu, and K. Ueda. 2009. Astaxanthin dirhamnoside, a new astaxanthin derivative produced by a radio-tolerant bacterium, Sphingomonas astaxanthinifaciens. J. Antibiot. 62:397–399. Asker, D., T.S. Awad, T. Beppu, and K. Ueda. 2012a. A novel radio-tolerant astaxanthin-producing bacterium reveals a new astaxanthin derivative: astaxanthin dirhamnoside. Methods Mol. Biol. 892:61–97. Asker, D., T.S. Awad, T. Beppu, and K. Ueda. 2012b. Isolation, characterization, and diversity of novel radiotolerant carotenoid-producing bacteria. Methods Mol. Biol. 892:21–60. Asker, D., T.S. Awad, T. Beppu, and K. Ueda. 2012c. Novel zeaxanthin-producing bacteria isolated from a radioactive hot spring water. Methods Mol. Biol. 892:99–131. Ausich, R.L. 1997. Commercial opportunities for carotenoid production by biotechnology. Pure Appl. Chem. 69:2169–2173. Beja, O., L. Aravind, E.V. Koonin, M.T. Suzuki, A. Hadd, L.P. Nguyen, S.B. Jovanovich, C.M. Gates, R.A. Feldman, J.L. Spudich, E.N. Spudich, and E.F. DeLong. 2000. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906. Bernardet, J.F., Y. Nakagawa, and B. Holmes. 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 52:1049–1070. Berry, A., D. Janssens, M. Humbelin, J.P. Jore, B. Hoste, I. Cleenwerck, M. Vancanneyt, W. Bretzel, A.F. Mayer, R. Lopez-Ulibarri, B. Shanmugam, J. Swings, and L. Pasamontes. 2003. Paracoccus zeaxanthinifaciens sp. nov., a zeaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 53:231–238. Beuttler, H., J. Hoffmann, M. Jeske, B. Hauer, R.D. Schmid, J. Altenbuchner, and V.B. Urlacher. 2011. Biosynthesis of zeaxanthin in recombinant Pseudomonas putida. Appl. Microbiol. Biotechnol. 89:1137–1147. Bhadra, B., P. Roy, and R. Chakraborty. 2005. Serratia ureilytica sp. nov., a novel urea-utilizing species. Int. J. Syst. Evol. Microbiol. 55:2155–2158. Bhosale, P. 2004. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biotechnol. 63:351–361. Bhosale, P., and P.S. Bernstein. 2005. Microbial xanthophylls. Appl. Microbiol. Biotechnol. 68:445–455. Bi, W., M. Tian, J. Zhou, and K.H. Row. 2010. Task specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878:2243–2248. Bjerkeng, B., and G.M. Berge. 2000. Apparent digestibility coefficients and accumulation of astaxanthin E/Z isomers in Atlantic salmon ( Salmo salar L.) and Atlantic halibut (Hippoglossus hippoglossus L.). Comp. Biochem. Phys. B 127:423–432. Blackman, A.J., and C.P. Li. 1994. New tambjamine alkaloids from the marine bryozoan Bugula dentate. Aust. J. Chem. 47:1625–1629. Bokel, C. 2008. EMS screens : from mutagenesis to screening and mapping. Methods Mol. Biol. 420:119–138. Bone, R.A., J.T. Landrum, L.M. Friedes, C.M. Gomez, M.D. Kilburn, E. Menendez, I. Vidal, and W. Wang. 1997. Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp. Eye Res. 64:211–218. Bone, R.A., J.T. Landrum, Y. Cao, A.N. Howard, and F. Alvarez-Calderon. 2007. Macular pigment response to a supplement containing meso-zeaxanthin, lutein and zeaxanthin. Nutr. Metab. 4:12. Bosma, T.L., J.M. Dole, and N.O. Maness. 2003. Optimizing marigold (Tagetes erecta L.) petal and pigment yield. Crop Sci. 43:2118–2124. Bowman, J.P., C.M. Nichols, and J.A. Gibson. 2003. Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int. J. Syst. Evol. Microbiol. 53:1343–1355. Britton, G., S. Liaaen-Jensen, and H. Pfander. 2004. Carotenoids handbook. Birkhauser, Basel. Bruckner, A.W. 2002. Life-saving products from coral reefs. Issues Sci. Technol. 18:35. Bubrick, P. 1991. Production of astaxanthin from Haematococcus . Bioresour. Technol. 38:237–239. Burke, C., T. Thomas, S. Egan, and S. Kjelleberg. 2007. The use of functional genomics for the identification of a gene cluster encoding for the biosynthesis of an antifungal tambjamine in the marine bacterium Pseudoalteromonas tunicata. Environ. Microbiol. 9:814–818. Busse, H.-J., P. Kampfer, and E.B.M. Denner. 1999. Chemotaxonomic characterization of Sphingomonas. J. Ind. Microbiol. Biotechnol. 23:242–251. Calo, P., T.D. Miguel, C. Sieiro, J.B. Velazquez, and T.G. Villa. 1995. Ketocarotenoids in halobacteria: 3-hydroxy-echinenone and trans-astaxanthin. J. Appl. Bacteriol. 79:282. Carte, B., and D.J. Faulkner. 1983. Defensive metabolites from three nembrothid nudibranchs. J. Org. Chem. 48:2314–2318. Chang, Y.-Y., and J.E. Cronan. 1999. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol. Microbiol. 33:249–259. Chen, C., Q. Zheng, Y.-N. Wang, X.-J. Yan, L.-K. Hao, X. Du, and N. Jiao. 2010. Stakelama pacifica gen. nov., sp. nov., a new member of the family Sphingomonadaceae isolated from the Pacific Ocean. Int. J. Syst. Evol. Microbiol. 60:2857–2861. Christiansen, R., J. Glette, O. Lie, O.J. Torrissen, and R. Waagbo. 1995. Antioxidant status and immunity in Atlantic salmon, Salmo salar L, fed semi-purified diets with and without astaxanthin supplementation. J. Fish Dis. 18:317–328. Christiansen, R., and O.J. Torrissen. 1997. Effects of dietary astaxanthin supplementation on fertilization and egg survival in Atlantic salmon (Salmo salar L). Aquaculture 153:51–62. Claus, H., and H. Decker. 2006. Bacterial tyrosinases. Syst. Appl. Microbiol. 29:3–14. Collins, M.D. 1985. Analysis of isoprenoid quinones. Methods Microbiol. 18:329–366. Colwell, R.R. 1970. Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J. Bacteriol. 104:410–433. Cowan, S.T. 1968. A dictionary of microbial taxonomic usage. Oliver & Boyd, Edinburgh. Cowan, S.T., and K.J. Steel. 1993. Manual for the identification of medical bacteria. Cambridge University Press, Cambridge. De Ley, J., and J. Swings. 1976. Phenotypic description, numerical analysis and a proposal for an improved taxonomy and nomenclature of the genus Zymomonas Kluyver and van Niel 1936. Int. J. Syst. Bacteriol. 26:146–157. Del Rio, E., F.G. Acien, M.C. Garcia-Malea, J. Rivas, E. Molina-Grima, and M.G. Guerrero. 2008. Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. Biotechnol. Bioeng. 100:397–402. de Miguel, T., C. Sieiro, M. Poza, and T.G. Villa. 2001. Analysis of canthaxanthin and related pigments from Gordonia jacobaea mutants. J. Agric. Food Chem. 49:1200–1202. Duran, N., and C.F.M. Menck. 2001. Chromobacterium violaceum: a review of pharmacological and industrial perspectives. Crit. Rev. Microbiol. 27:201–222. Egan, S., S. James, C. Holmstrom, and S. Kjelleberg. 2002. Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicate. Environ. Microbiol. 4:433–442. Embley, T.M., and T.R. Wait. 1994. Structural lipids of Eubacteria. p. 121–161. In M. Goodfellow and A.G. O'Donell (ed.) Chemical methods in prokaryotic systematics. Wiley, Chichester. Ernst, H. 2002. Recent advances in industrial carotenoid synthesis. Pure Appl. Chem. 74:1369–1382. Faure, H., V. Fayol, C. Galabert, P. Grolier, G.L. Moel, J.P. Stephens, and F. Nabet. 1999. Carotenoids: 2. Diseases and supplementation studies. Ann. Biol. Clin. 57:273–282. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17:368–376. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. Fenical, W., and P.R. Jensen. 1993. Marine microorganisms: a new biomedical resource. p. 419–457. In D.H. Attaway and O.R. Zaborsky (ed.) Marine Biotechnology. Plenum Press, New York, USA. Fitch, W.M. 1971. Towards defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 20:406–416. Francis, F.J. 2000. Carotenoids as food colorants. Cer. Food World 45:198–203. Franks, A., P. Haywood, C. Holmstrom, S. Egan, S. Kjelleberg, and N. Kumar. 2005. Isolation and structure elucidation of a novel yellow pigment from the marine bacterium Pseudoalteromonas tunicate. Molecules 10:1286–1291. Fujita, T., M. Satake, T. Watanabe, C. Kitajima, W. Miki, K. Yamaguchi, and S. Konosu. 1983. Pigmentation of cultured red sea bream with astaxanthin diester purified from krill oil. Bull. Jpn. Soc. Sci. Fish. 49:1855–1865. Gauthier, M.J. 1976. Morphological, physiological, and biochemical characteristics of some violet-pigmented bacteria isolated from seawater. Can. J. Microbiol. 22:138–149. GCG. 1995. Wisconsin Package Version 8.1 Program Manual. Madison, WI: Computer Group. Gerber, N.N. 1969. Prodigiosin-like pigments from Actinomadura (Nocardia) pelletieri and Actinomadura madurae. Appl. Microbiol. 18:1–3. Geueke, B., H.-J. Busse, T. Fleischmann, P. Kampfer, and H.-P.E. Kohler. 2007. Description of Sphingosinicella xenopeptidilytica sp. nov., a beta-peptide-degrading species, and emended descriptions of the genus Sphingosinicella and the species Sphingosinicella microcystinivorans. Int. J. Syst. Evol. Microbiol. 57:107–113. Gich, F., and J. Overmann. 2006. Sandarakinorhabdus limnophila gen. nov., sp. nov., a novel bacteriochlorophyll a-containing, obligately aerobic bacterium isolated from freshwater lakes. Int. J. Syst. Evol. Microbiol. 56:847–854. Gierhart, D.L. 1994. Production of zeaxanthin and zeaxanthin-containing compositions. Patent US5308759 Gocke, E., H. Burgin, L. Muller, and T. Pfister. 2009. Literature review on the genotoxicity, reproductive toxicity, and carcinogenicity of ethyl methanesulfonate. Toxicol. Lett. 190:254–265. Goldfine, H. 1984. Bacterial membranes and lipid packing theory. J. Lipid Res. 25:1501–1507. Gomez-Consarnau, L., J.M. Gonzalez, M. Coll-Llado, P. Gourdon, T. Pascher, R. Neutze, C. Pedros-Alio, and J. Pinhassi. 2007. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445:210–213. Goodwin, T.W. 1980. Nature and distribution of carotenoids. Food Chem. 5:3–13. Hamana, K. 1996. Distribution of diaminopropane and acetylspermidine in Enterobacteriaceae. Can. J. Microbiol. 42:107–114. Hamana, K., A. Sakamoto, S. Tachiyanagi, and E. Terauchi. 2003. Polyamine profiles of some members of the gamma subclass of the class Proteobacteria: polyamine analysis of twelve recently described genera. Microbiol. Cult. Coll. 19:3–11. Hameed, A., A.B. Arun, H.-P. Ho, C.-M. Chang, P.D. Rekha, M.-R. Lee, S. Singh, and C.-C. Young. 2011. Supercritical carbon dioxide micronization of zeaxanthin from moderately thermophilic bacteria Muricauda lutaonensis CC-HSB-11T. J. Agric. Food Chem. 59:4119–4124. Hameed, A., M. Shahina, S.-Y. Lin, J.-C. Cho, W.-A. Lai, and C.-C. Young. 2013a. Kordia aquimaris sp. nov., a zeaxanthin-producing member of the family Flavobacteriaceae isolated from surface seawater, and emended description of the genus Kordia. Int. J. Syst. Evol. Microbiol. doi:10.1099/ijs.0.056051-0 Hameed, A., M. Shahina, S.-Y. Lin, K.R. Sridhar, L.-S. Young, M.-R. Lee, W.-M. Chen, J.-H. Chou, and C.-C. Young. 2012. Siansivirga zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing member of the family Flavobacteriaceae isolated from coastal seawater of Taiwan. FEMS Microbiol. Lett. 333:37–45. Hameed, A., M. Shahina, S.-Y. Lin, W.-A. Lai, Y.-H. Hsu, Y.-C. Liu, and C.-C. Young. 2013b. Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater. Int. J. Syst. Evol. Microbiol. (in press). Harker, M., J. Hirschberg, and Oren A. 1998. Paracoccus marcusii sp. nov., an orange Gram negative coccus. Int. J. Syst. Bacteriol. 48:543–548. Heiner, C.R., K.L. Hunkapiller, S.-M. Chen, J.I. Glass, and E.Y. Chen. 1998. Sequencing multimegabase-template DNA with BigDye terminator chemistry. Genome Res. 8:557–561. Holt, N.E., D. Zigmantas, L. Valkunas, X.P. Li, K.K. Niyogi, and G.R. Fleming. 2005. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436. Hugenholtz, P., and N.R. Pace. 1996. Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol. 14:190–197. Humbelin, M., A. Thomas, J. Lin, J. Li, J. Jore, and A. Berry. 2002. Genetics of isoprenoid biosynthesis in Paracoccus zeaxanthinifaciens. Gene 297:129–139. Iturriaga, E.A., T. Papp, J. Breum, J. Arnau, and A.P. Eslava. 2005. Strain and culture conditions improvement for b -carotene production with Mucor. Humana, Totowa. Jacobson, G.K., S.O. Jolly, J.J. Sedmak, T.J. Skatrud, and J.M. Wasileski. 1999. Astaxanthin overproducing strains of Phaffia rhodozyma, methods for their cultivation, and their use in animal feeds. Patent US6015684 Jacques, P.F., and L.T. Chylack, Jr. 1991. Epidemiologic evidence of a role for the antioxidant vitamins and carotenoids in cataract prevention. Am. J. Clin. Nutr. 53:352–355. Jahnke, L.S. 1999. Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A radiation. J. Photochem. Photobiol. 48:68–74. Jogler, M., H. Chen, J. Simon, M. Rohde, H.-J. Busse, H.-P. Klenk, B.J. Tindall, and J. Overmann. 2012. Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related Sphingopyxis species as members of the novel genus Sphingorhabdus. Int. J. Syst. Evol. Microbiol. doi:ijs.0.043133-0v1-ijs.0.043133-0 Johnson, E.J. 2002. The role of carotenoids in human health. Nutr. Clin. Care 5:56–65. Kahng, H.Y., B.S. Chung, D.H. Lee, J.S. Jung, J.H. Park, and C.O. Jeon. 2009. Cellulophaga tyrosinoxydans sp. nov., a tyrosinase-producing bacterium isolated from seawater. Int. J. Syst. Evol. Microbiol. 59:654–657. Kampfer, P., A.B. Arun, C.-C. Young, H.-J. Busse, J. Kassmannhuber, R. Rossello-Mora, B. Geueke, P.D. Rekha, and W.-M. Chen. 2012. Sphingomicrobium lutaoense gen. nov., sp. nov., isolated from a coastal hot spring. Int. J. Syst. Evol. Microbiol. 62:1326–1330. Kampfer, P., and R.M. Kroppenstedt. 1996. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can. J. Microbiol. 42:989–1005. Khan, S.T., Y. Nakagawa, and S. Harayama. 2007. Galbibacter mesophilus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae. Int. J. Syst. Evol. Microbiol. 57:969–973. Kim, B.-C., K.H. Lee, M.N. Kim, M.Y. Jung, Y.-H. Chang, J. Lee, and K.-S. Shin. 2011. Joostella atrarenae sp. nov., a novel member of the Flavobacteriaceae originating from the black sea sand of Jeju Island. Curr. Microbiol. 62:606–611. Kim, O.-S., Y.-J. Cho, K. Lee, S.-H. Yoon, M. Kim, H. Na, S.-C. Park, Y.S. Jeon, J.-H Lee, H. Yi, S. Won, and J. Chun. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62:716–721. Kim, Y.S., C.S. Park, and D.K. Oh. 2010. Retinal production from β-carotene by β-carotene 15,15'-dioxygenase from an unculturable marine bacterium. Biotechnol. Lett. 32:957–961. Kim, Y.S., N.H. Kim, S.J. Yeom, S.W. Kim, and D.K. Oh. 2009. In vitro characterization of a recombinant Blh protein from an uncultured marine bacterium as a β-carotene 15,15'-dioxygenase. J. Biol. Chem. 284:15781–15793. Kim, Y.T., J.H. Lee, and Y.B. Seo. 2006. Biotechnological application of astaxanthin biosynthesis enzymes from the marine bacterium, Paracoccus haeundaesis. Faseb J. 20:106–106. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120. Klassen, J.L. 2010. Phylogenetic and evolutionary patterns in microbial carotenoid biosynthesis are revealed by comparative genomics. PLOS One 5:e11257. Klaui, H., and J.C. Bauernfeind. 1981. Carotenoids as food colors. p. 47–317. In J.C. Bauernfeind (ed.). Carotenoids as colorants and vitamin A precursors. Academic Press, New York. Kobayashi, H., Y. Nogi, and K. Horikoshi. 2007. New violet 3,3'-bipyridyl pigment purified from deep-sea microorganism Shewanella violacea DSS12. Extremophiles 11:245–250. Kosako, Y., E. Yabuuchi, T. Naka, N. Fujiwara, and K. Kobayashi. 2000. Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkove et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkove et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol. Immunol. 44:563–575. Krinsky, N.I. 1989. Antioxidant functions of carotenoids. Free Radic. Biol. Med. 7:617–635. Krinsky, N.I. 2001. Carotenoids as antioxidants. Nutrition 17:815–817. Krinsky, N.I., J.T. Landrum, and R.A. Bone. 2003. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr. 23:171–201. Lau, G.W., H. Ran, F. Kong, D.J. Hassett, and D. Mavrodi. 2004. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect. Immun. 72:4275–4278. Lau, K.W., C.Y. Ng, J. Ren, S.C. Lau, P.-Y. Qian, P.-K. Wong, T.C. Lau, and M. Wu. 2005. Owenweeksia hongkongensis gen. nov., sp. nov., a novel marine bacterium of the phylum 'Bacteroidetes'. Int. J. Syst. Evol. Microbiol. 55:1051–1057. Laursen, J.B., and J. Nielsen. 2004. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 104:1663–1685. Lemuth, K., K. Steuer, and C. Albermann. 2011. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb. Cell Fact. 10:29–41. Li, D., F. Wang, X. Xiao, X. Zeng, Q.Q. Gu, and W. Zhu. 2007. A new cytotoxic phenazine derivative from a deep sea bacterium Bacillus sp. Arch. Pharm. Res. 30:552–555. Li, F., R.P. Maskey, S. Qin, I. Sattler, H.H. Fiebig, A. Maier, A. Zeeck, and H. Laatsch. 2005. Chinikomycin A and B: isolation, structure elucidation and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045. J. Nat. Prod. 68:349–353. Liu, X., Z. Gai, F. Tao, H. Tang, and P. Xu. 2012. Carotenoids play a positive role in the degradation of heterocycles by Sphingobium yanoikuyae. PLoS One doi:10.1371/journal.pone.0039522. Liu, Y.S., and J.Y. Wu. 2006. Hydrogen peroxide-induced astaxanthin biosynthesis and catalase activity in Xanthophyllomyces dendrorhous. Appl. Microbiol. Biotechnol. 73:663–668. Lorenz, R.T., and G.R. Cysewski. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18: 160–167. Manh, H.D., Y. Matsuo, A. Katsuta, S. Matsuda, Y. Shizuri, and H. Kasai. 2008. Robiginitalea myxolifaciens sp. nov., a novel myxol-producing bacterium isolated from marine sediment, and emended description of the genus Robiginitalea. Int. J. Syst. Evol. Microbiol. 58:1660–1664. Margalith, P.Z. 1992. Pigment Microbiology. Chapman & Hall, London, UK. Martin, J.F., E. Gudina, and J.L. Barredo. 2008. Conversion of β-carotene into astaxanthin: two separate enzymes or a bifunctional hydroxylase-ketolase protein? Microb. Cell Fact.7:3–13. Martinez, A., A.S. Bradley, J.R. Waldbauer, R.E. Summons, and E.F. DeLong. 2007. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc. Natl. Acad. Sci. U. S. A. 104:5590–5595. Maruyama, T., H.-D. Park, K. Ozawa, Y. Tanaka, T. Sumino, K. Hamana, A. Hiraishi, and K. Kato. 2006. Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 56:85–89. Marz, U. 2008. FOD025C - The Global market for carotenoids. BCC Research. Marz, U. 2005. GA-110R - the global market for carotenoids. Business Communications Co., Norwalk. Matsumoto, M., D. Iwama, A. Arakki, A. Tanaka, T. Tanaka, H. Miyashita, and T. Matsunaga. 2011. Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. Int. J. Syst. Evol. Microbiol. 61:2956–2961. Mavrodi, D.V., T.L. Peever, O.V. Mavrodi, J.A. Parejko, J.M. Raaijmakers, P. Lemanceau, S. Mazurier, L. Heide, W. Blankenfeldt, D.M. Weller, and L.S. Thomashow. 2010. Diversity and evolution of the phenazine biosynthesis pathway. Appl. Environ. Microbiol. 76:866–879. Mesbah, M., U. Premachandran, and W.B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic-acid by high-performance liquid-chromatography. Int. J. Syst. Bacteriol. 39:159–167. Meyers, S.P., and D. Bligh. 1981. Characterization of astaxanthin pigments from heat-processed craw fish waste. J. Agric. Food Chem. 29:505–508. Miller, M.W., M. Yoneyama, and M. Soneda. 1976. Phaffia, a new yeast genus in the Deuteromycotina ( Blastomycetes ). Int. J. Syst. Bacteriol. 26:286–291. Minnikin, D.E., A.G. O'Donnell, M. Goodfellow, G. Alderson, M. Athalye, A. Schaal, and J.H. Parlett. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Meth. 2:233–241. Misawa, N. 2011. Carotenoid β-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls. Mar. Drugs 9:757–771. Misawa, N., and H. Shimada. 1998. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J. Biotechnol. 59:169–181. Montaner, B., and R. Perez-Tomas. 2003. The prodigiosins: a new family of anticancer drugs. Curr. Cancer Drug Targets 3:57–65. Murray, R.G.E., R.N. Doetsch, and C.F. Robinow. 1994. Determinative and cytological light microscopy. p. 21–41. In P. Gerhardt, R.G.E. Murray, W.A. Wood and N.R. Krieg (ed.) Methods for general and molecular bacteriology. American society of microbiology, Washington, DC. Murray, R.G.E., D.J. Brenner, R.R. Colwell, P. De Vos, M. Goodfellow, P.A.D. Grimont, N. Pfennig, E. Stackebrandt, and G.A. Zavarzin. 1990. Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria. Int. J. Syst. Bacteriol. 40:213–215. Nelis, H.J., and A.P. De Leenheer. 1989. Profiling and quantitation of bacterial carotenoids by liquid-chromatography and photodiode array detection. Appl. Environ. Microb. 55:3065–3071. O'Brien, T.P., and W.N. Frankel. 2004. Moving forward with chemical mutagenesis in the mouse. J. Physiol. 554:13–21. Osanjo, G.O., E.W. Muthike, L. Tsuma, M.W. Okoth, W.D. Bulimo, H. Lunsdorf, W.R. Abraham, M. Dion, K.N. Timmis, P.N. Golyshin, and F.J. Mulaa. 2009. A salt lake extremophile, Paracoccus bogoriensis sp. nov., efficiently produces xanthophyll carotenoids. Afr. J. Microbiol. Res. 3:426–433. Page, G.I., and S.J. Davies. 2006. Tissue astaxanthin and canthaxanthin distribution in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 143:125–132. Paiva, S.A., and R.M. Russell. 1999. Beta-carotene and other carotenoids as antioxidants. J. Am. Coll. Nutr. 18:426–433. Pasamontes, L., D. Hug, M. Tessier, H.P. Hohmann, J. Schierle, and A.P. van Loon. 1997. Isolation and characterization of the carotenoid biosynthesis genes of Flavobacterium sp. strain R1534. Gene 185:35–41. Peng, Y.-M., Y.-S. Peng, J.M. Childers, K.D. Hatch, D.J. Roe, Y. Lin, and P. Lin. 1998. Concentrations of carotenoids, tocopherols, and retinol in paired plasma and cervical tissue of patients with cervical cancer, precancer, and noncancerous diseases. Cancer Epidemiol. Biomarkers Prev. 7:347–350. Pierson, L.S., and E.A. Pierson. 2010. Metabolism and function of phenazines in bacteria: impact on the behavior of bacteria in the environment and biotechnological process. Appl. Microbiol. Biotechnol. 86:1659–1670. Pinkerton, D.M., M.G. Banwell, M.J. Garson, N. Kumar, M. O. de Moraes, B.C. Cavalcanti, F.W. A. Barros, and C. Pessoa. 2010. Antimicrobial and cytotoxic activities of synthetically derived tambjamines C and E-J, BE-18591, and a related alkaloid from the marine bacterium Pseudoalteromonas tunicate. Chem. Biodivers. 7:1311–1324. Prasad, K.S., A.B. Arun, P.D. Rekha, C.-C. Young, J.-L. Chang, and J.-M. Zen. 2009. A microbial sensor based on direct electron transfer at Shewanella sp. drop-coated screen-printed carbon electrodes. Electroanalysis 21:1646–1650. Preobrazhenskiĭ, V.N., V.V. Vasilenko, and A.A. Matveev. 1997. Beta-carotenoids and their potential use in diseases of the digestive tract. Klin. Med. 75:43–45. Pusecker, K., H. Laatsch, E. Helmke, and H. Weyland. 1997. Dihydrophencomycin methyl ester, a new phenazine derivative from a marine streptomycete. J. Antibiot. 50:479–483. Quan, Z.-X., Y.-P. Xiao, S.W. Roh, Y.-D. Nam, H.-W. Chang, K.-S. Shin, S.-K. Rhee, Y.-H. Park, and J.-W. Bae. 2008. Joostella marina gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the East Sea. Int. J. Syst. Evol. Microbiol. 58:1388–1392. Rahlert, N., P.D. Fraser, and G. Sandmann. 2009. A crtA-related gene from Flavobacterium P99-3 encodes a novel carotenoid 2-hydroxylase involved in myxol biosynthesis. FEBS Lett. 583:1605–1610. Ran, H., D.J. Hassett, and G.W. Lau. 2003. Human targets of Pseudomonas aeruginosa pyocyanin. Proc. Natl. Acad. Sci. U. S. A. 100:14315–14320. Rapoport, H., and K.G. Holden. 1962. The synthesis of prodigiosin. J. Am. Chem. Soc. 84:635–642. Rettori, D., and N. Duran. 1998. Production, extraction and purification of violacein: an antibiotic pigment produced by Chromobacterium violaceum. World J. Microbiol. Biotechnol. 14:685–688. Riedel, T., B. Held, M. Nolan, S. Lucas, A. Lapidus, H. Tice, T.G. Rio, J.-F. Cheng, C. Han, R. Tapia, L.A. Goodwin, S. Pitluck, K. Liolios, K. Mavromatis, I. Pagani, N. Ivanova, N. Mikhailova, A. Pati, A. Chen, K. Palaniappan, M. Rohde, B.J. Tindall, J.C. Detter, M. Goker, T. Woyke, J. Bristow, J.A. Eisen, V. Markowitz, P. Hugenholtz, H.-P. Klenk, and N.C. Kyrpides. 2012. Genome sequence of the orange-pigmented seawater bacterium Owenweeksia hongkongensis type strain (UST20020801(T)). Stand. Genomic Sci. 7:120–130. Rufer, C.E., J. Moeseneder, K. Briviba, G. Rechkemmer, and A. Bub. 2008. Bioavailability of astaxanthin stereoisomers from wild (Oncorhynchus spp.) and aquacultured (Salmo salar) salmon in healthy men: a randomised, double-blind study. Br. J. Nutr. 99:1048–1054. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425. Sajilata, M.G., R.S. Singhal, and M.Y. Kamat. 2008. The carotenoid pigment zeaxanthin-A review. Compr. Rev. Food Sci. Food Saf. 7:29–49. Sarin, S., V. Bertrand, H. Bigelow, A. Boyanov, M. Doitsidou, R.J. Poole, S. Narula, and O. Hobert. 2010. Analysis of multiple ethyl methanesulfonate-mutagenized Caenorhabditis elegans strains by whole-genome sequencing. Genetics 185:417–430. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl. 20:16. Schalch, W., and P. Weber. 1994. Vitamins and,carotenoids– a promising approach to reducing the risk of coronary heart disease, cancer and eye diseases. Adv. Exp. Med. Biol. 366:335–350. Scherer, P., and H. Kneifel. 1983. Distribution of polyamines in methanogenic bacteria. J. Bacteriol. 154:1315–1322. Schleifer, K.H., and O. Kandler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36:407–477. Seddon, J.M., U.A. Ajani, R.D. Sperduto, R. Hiller, N. Blair, T.C. Burton, M.D. Farber, E.S. Gragoudas, J. Haller, D.T. Miller, L.A. Yannuzzi, and W. Willett. 1994. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye disease case-control study group. JAMA 272:1413–1420. Shahina, M., A. Hameed, S.-Y. Lin, Y.-H. Hsu, Y.-C. Liu, I.-C. Cheng, M.-R. Lee, W.-A. Lai, R.-J. Lee, and C.-C. Young. 2013. Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium. Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.047704-0 Shindo, K., K. Kikuta, A. Suzuki, A. Katsuta, H. Kasai, M. Yasumoto-Hirose, Y. Matsuo, N. Misawa, and S. Takaichi. 2007. Rare carotenoids, (3R)-saproxanthin and (3R,2 'S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities. Appl. Microbiol. Biot. 74:1350–1357. Sikora, P., A. Chawade, M. Larsson, J. Olsson, and O. Olsson. 2011. Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int. J. Plant Genomics doi:10.1155/2011/314829 Sjogren, J., J. Magnusson, A. Broberg, J. Schnurer, and L. Kenne. 2003. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl. Environ. Microbiol. 69:7554–7557. Sly, L.I., and M.M. Cahill. 1997. Transfer of Blastobacter natatorius (Sly 1985) to the genus Blastomonas gen. nov. as Blastomonas natatoria comb. nov. Int. J. Syst. Bacteriol. 47:566–568. Smibert, R.M., and N.R. Krieg. 1994. Phenotypic characterization. p. 607–654. In P. Gerhardt, R.G.E. Murray, W.A. Wood and N.R. Krieg (ed.) Methods for general and molecular bacteriology. American Society of Microbiology,Washington, DC. Soliev, A.B., K. Hosokawa, and K. Enomoto. 2011. Bioactive pigments from marine bacteria: applications and physiological roles. Evid.-based Complement Altern. Med. doi:10.1155/2011/670349 Staley, J.T., and N.J. Krieg. 1984. Classification of prokaryotic organisms: an overview. p. 1–3. In N.R. Krieg and J.G. Holt (ed.) Bergey's manual of systematic bacteriology. The Williams & Wilkins Co., Baltimore. Stankovic, I. (ed.). 2004. Zeaxanthin chemical and technical assessment. FAO, Geneva. Takeuchi, M., K. Hamana, and A. Hiraishi. 2001. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol. 51:1405–1417. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731–2739. Teather, R.M., and P.J. Wood. 1982. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43:777–780. Teramoto, M., N. Rahlert, N. Misawa, and G. Sandmann. 2004. 1-Hydroxy monocyclic carotenoid 3,4-dehydrogenase from a marine bacterium that produces myxol. FEBS Lett. 570:184–188. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876–4882. Till, B.J., J. Cooper, T.H. Tai, P. Colowit, E.A. Greene, S. Henikoff, and L. Comai. 2007. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. doi:10.1186/1471-2229-7-19 Till, B.J., S.H. Reynolds, C. Weil, N. Springer, C. Burtner, K. Young, E. Bowers, C.A. Codomo, L.C. Enns, A.R. Odden, E.A. Greene, L. Comai, and S. Henikoff. 2004. Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol. doi:10.1186/1471-2229-4-12 Tindall, B.J., R. Rossello-Mora, H.-J. Busse, W. Ludwig, and P. Kampfer. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 60:249–266. Torrissen, O.J. 1989. Pigmentation of salmonids–interactions of astaxanthin and canthaxanthin on pigment deposition in Rainbow-Trout. Aquaculture 79:363–374. Tripura, C., B. Sashidhar, and A.R. Podile. 2007. Ethyl methanesulfonate mutagenesis-enhanced mineral phosphate solubilization by groundnut-associated Serratia marcescens GPS-5. Curr. Microbiol. 54:79–84. Turick, C.E., L.S. Tisa, and F. Caccavo. 2002. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl. Environ. Microbiol. 68:2436–2444. Turner, J.M., and A.J. Messenger. 1986. Occurrence, biochemistry and physiology of phenazine pigment production. Adv. Microb. Physiol. 27:211–275. Uchida, H., K. Hamana, M. Miyazaki, T. Yoshida, and Y. Nogi. 2012. Parasphingopyxis lamellibrachiae gen. nov., sp. nov., isolated from a marine annelid worm. Int. J. Syst. Evol. Microbiol. 62:2224–2228. Vandamme, P., B. Pot, M. Gillis, P. de Vos, K. Kersters, and J. Swings. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Mol. Biol. Rev. 60:407–438. Versalovic, J., M. Schneider, F.J. de Bruijn, and J.R. Lupski. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell Biol. 5: 25–40. Watts, D., and J.R. MacBeath. 2001. Automated fluorescent DNA sequencing on the ABI PRISM 310 Genetic Analyzer. Methods Mol. Biol. 167:153–170. Williamson, N.R., P.C. Fineran, F.J. Leeper, and G.P. Salmond. 2006. The biosynthesis and regulation of bacterial prodiginines. Nat. Rev. Microbiol. 4:887–899. Williamson, N.R., P.C. Fineran, T. Gristwood, S.R. Chawrai, F.J. Leeper, and G.P.C. Salmond. 2007. Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol. 2:605–618. Wilson, R., T. Pitt, G. Taylor, D. Watson, J. MacDermot, D. Sykes, D. Roberts, and P. Cole. 1987. Pyocyanin and 1-hydroxyphenazine produced by Pseudomonas aeruginosa inhibit the beating of human respiratory cilia in vitro. J. Clin. Invest. 79:221–229. Yabuuchi, E., I. Yano, H. Oyaizu, Y. Hashimoto, T. Ezaki, and H. Yamamoto. 1990. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol. 34:99–119. Yabuuchi, E., Y. Kosako, T. Naka, S. Suzuki, and I. Yano. 1999. Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiol. Immunol. 43:339–349. Yagi, H., G. Corzo, and T. Nakahara. 1997. N-acyl amino acid biosynthesis in marine bacterium, Deleya marina. Biochim. Biophys. Acta 1336:28–32. Yokoyama, A., H. Izumida, and W. Miki. 1994. Production of astaxanthin and 4-ketozeaxanthin by the marine bacterium, Agrobacterium aurantiacum. Biosci. Biotech. Biochem. 58:1842–1844. Yokoyama, A., and W. Miki. 1995. Composition and presumed biosynthetic-pathway of carotenoids in the astaxanthin-producing bacterium Agrobacterium aurantiacum. FEMS Microbiol. Lett. 128:139–144. Yokoyama, A., H. Izumida, and Y. Shizuri. 1996a. New carotenoid sulfates isolated from a marine bacterium. Biosci. Biotech. Bioch. 60:1877–1878. Yokoyama, A., W. Miki, H. Izumida, and Y. Shizuri. 1996b. New trihydroxy-keto-carotenoids isolated from an astaxanthin-producing marine bacterium. Biosci. Biotech. Biochem. 60:200–203. Yuan, J.P., J. Peng, K. Yin, and J.H. Wang. 2010. Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Mol. Nutr. Food Res. 55:150–165. Yurkov, V., E. Stackebrandt, O. Buss, A. Vermeglio, V. Gorlenko, and J.T. Beatty. 1997. Reorganization of the genus Erythromicrobium: description of 'Erythromicrobium sibiricum' as Sandaracinobacter sibiricus gen. nov., sp. nov., and of 'Erythromicrobium ursincola' as Erythromonas ursincola gen. nov., sp. nov. Int. J. Syst. Bacteriol. 47:1172–1178. Zakeri, F., K.A. Noghabi, M. Sadeghizadeh, M.R. Kardan, F. Masoomi, M.R. Farshidpour, and A. Atarilar. 2010. Serratia sp. ZF03: an efficient radium biosorbent isolated from hot-spring waters in high background radiation areas. Bioresour. Technol. 101:9163–9170. Zhang, C.-X., S.-Y. Yang, M.-X. Xu, J. Sun, H. Liu, J.-R. Liu, H. Liu, F. Kan, J. Sun, R. Lai, and K.-Y. Zhang. 2009. Serratia nematodiphila sp. nov., associated symbiotically with the entomopathogenic nematode Heterorhabditidoides chongmingensis (Rhabditida: Rhabditidae). Int. J. Syst. Evol. Microbiol. 59:1603–1608. Zhang, Y.-M., and C.O. Rock. 2008. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 6:222–233. Zhou, Y., J. Su, Q. Lai, X. Li, X. Yang, P. Dong, and T. Zheng. 2013. Phaeocystidibacter luteus gen. nov., sp. nov., a member of the family Cryomorphaceae isolated from the marine alga Phaeocystis globosa, and emended description of Owenweeksia hongkongensis. Int. J. Syst. Evol. Microbiol. 63:1143–1148. Zhu, L., X.C. Wu, O. Li, C.D. Qian, and H.C. Gao. 2012. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461. PLoS One doi:10.1371/journal.pone.0035099.
摘要: Bioactive natural products from the marine resources, including microorganisms encompass potential industrial and bio-medical applications. Irrespective of the enormous difficulty in isolating and harvesting marine bacteria, naturally occurring bioactive microbial metabolites are increasingly attractive due to their broad-ranging pharmacological activities, especially those with unique color pigments. However, characterization of bioactive compounds including pigments is quite complicated and thus given least importance so far in polyphasic taxonomy, which on the other hand integrates several kinds of data pertaining phenotypic, genotypic and phylogenetic characteristics during bacterial systematics. Similarly, the cumulative impact of any mutagenic chemical substance on pigment profile as well as other taxonomic markers is poorly studied. In this work, five novel, pigment-producing, Gram-negative, rod-shaped, strictly aerobic and non-spore-forming marine bacterial strains designated CC-AMO-30B, CC-AMZ-30M, CC-AMZ-30N, CC-AMO-30D and CC-AMWY-103B, isolated from coastal surface seawater in Taiwan were subjected to detailed pigment analysis and polyphasic taxonomy. Pigments were analyzed through UV–visible spectrophotometry, high-performance liquid chromatography-diode array detector and liquid chromatographic mass spectrometry. Finally, the impact of mutagenic ethyl methanesulfonate (EMS; doses 0.5% and 1%) on pigment profile and taxonomic markers was assessed with reference to red-pigmented Serratia. Strains CC-AMO-30B, CC-AMZ-30M and CC-AMZ-30N were identified to be Sphingomicrobium species of the family Sphingomonadaceae and named as S. astaxanthinifaciens, S. marinum and S. flavum, respectively. Strains CC-AMO-30D (Robertkochia marina) and CC-AMWY-103B (Luteibaculum oceani) are recognized to be novel genus of the family Flavobacteriaceae and Cryomorphaceae representatives, respectively. Strain CC-AMO-30B synthesized astaxanthin and its putative glycosyl derivatives, strains CC-AMZ-30M, CC-AMZ-30N and CC-AMWY-103B synthesized zeaxanthin and its isomers, whereas strain CC-AMO-30D produced both myxol and zeaxanthin. In addition, five closely related reference strains affiliated to a total of four different genera (Sphingomicrobium, Owenweeksia, Joostella and Galbibacter) were also characterized for their carotenoid profiles. Presently defined doses of EMS proved to be lethal to all novel strains, whereas at similar doses, Serratia strains (EMS-mutants CC-NPM-11>CC-LPM-20>CC-HPM-11) showed extensive heterogeneous alterations in the molecular, structural and biochemical features. The biosynthesis of prodigiosin was blocked completely in CC-NPM-11, where as other strains showed quantitative variation in terms of their prodigiosin profile. EMS-mutation hampered carbohydrate, protein, lipid and nucleic acid metabolism heterogeneously. Biosynthesis of saturated, unsaturated, hydroxyl and cyclo fatty acids were significantly affected. Unidentified aminolipids were most susceptible besides phosphatidylethanolamine, phosphatidylserine and an unidentified phospholipid. An unidentified polyamine, putrescine, cadaverine and spermidine showed significant quantitative variations. In summary, five novel strains and four reference strains of phylogenetically distant taxa were fully characterized for their bioactive pigments that could serve as model organisms for related analyses in the future. Furthermore, current study provided evidence for the lethal impact of EMS on pigmented marine bacterial isolates besides demonstrating susceptibility of pigments and evolutionarily conserved bacterial structural and molecular taxonomic markers for chemical mutation at similar doses in red-pigmented Serratia. While considering the hazardous impact of EMS, it is recommended that preference should be given to the screening and characterization of natural isolates for bioactive pigments instead of opting for strain improvement via chemical mutagenesis.
來自包含微生物的海洋資源的生物活性天然產物具有工業及生醫應用的潛力。既使分離海洋細菌有很大的困難度,天然的生物活性的微生物代謝物,尤其是獨特的色素物質由於其廣泛的臨床活性而受到矚目。無論如何,迄今在細菌系統學中整合表現型、基因型和親源性特性分析的多相分類學中,包括色素的生物活性化合物的特性分析受到最少重視。同樣地,致突變化學物質對於色素圖譜和其他分類標誌的累積效應的研究很少。在本研究中,對於自台灣沿海表層海水的五個新穎的菌株分別為 CC-AMO-30B、 CC-AMZ-30M、 CC-AMZ-30N、CC-AMO-30D和CC-AMWY-103B,其為產色素的、革蘭式陰性、桿形、絕對好氧、產鞭毛的和無形成孢子的海洋細菌菌株,進行色素分析及多相分類研究。藉由結合 UV–可見光分光光度計 和高效液體層析-光二極體陣列偵測器(HPLC-SAD)和液體層析質譜儀(LC-MS)分析色素物質。 最後,利用0.5%和1%劑量的乙基甲磺酸鹽(EMS) 對於紅色色素產生Serratia菌株其色素圖譜和分類標誌的影響。CC-AMO-30B、CC-AMZ-30M 和CC-AMZ-30N 等菌株經鑑定為Sphingomonadaceae科 的Sphingomicrobium 菌種,並命名分別為 S. astaxanthinifaciens、 S. marinum 和S. flavum。確認CC-AMO-30D (Robertkochia marina) 和CC-AMWY-103B (Luteibaculum oceani)分别為 Flavobacteriaceae 和 Cryomorphaceae科的新屬。CC-AMO-30B 菌株合成蝦紅素 (astaxanthin) 及其醣基衍生物,而CC-AMZ-30M、CC-AMZ-30N 和CC-AMWY-103B 菌株合成玉米黃素(zeaxanthin)及其異構物,而CC-AMO30D產生分別合成藍藻葉黃素醇(myxol)和玉米黃素。此外,我們亦同時調查屬於四個不同屬(Sphingomicrobium、Owenweeksia、Joostella 和 Galbibacter) 的5個緊密相關的標準菌株的類胡蘿蔔素圖譜。目前證實限定劑量的EMS 對所有新穎菌株有致死效果,然而對於Serratia 菌株(CC-NPM-11> CC-LPM-20> CC-HPM-11)在分子、結構和生化特性呈現異質性的改變。CC-NPM-11中靈菌紅素(prodigiosin)的合成受到完全抑制 ,然而其他菌株之靈菌紅素的圖譜呈現出量的變化。EMS-致突變異質性地傷害醣類、蛋白質、脂肪和核酸代謝。飽合、不飽和、羥基和環狀脂肪酸明顯受到影響。除了磷脂酰乙醇胺(PEA)、磷脂醯絲胺酸(PS) 和一個未知的磷脂類(PL),未知的胺脂類(AL)是最受影響的。一個未知的多胺、腐胺、屍胺和亞精胺的量呈現明顯改變。簡言之,五個新穎菌株和親緣性較遠的四個標準菌株的具生物活性的色素的特性分析可以在未來相關分析被當作生物模式。尤有甚者,本研究除了闡明在與產紅色素的Serratia菌株類似劑量的色素和演化性保留細菌結構和分子分類標誌的化學變異作用,並且提供EMS對於產色素海洋細菌對致死效應的證據。當考慮EMS的有害效應時,我們建議優先篩選和天然的生物活性色素的特性分析代替藉由化學突變挑選改良菌株。
URI: http://hdl.handle.net/11455/90148
文章公開時間: 2016-10-22
顯示於類別:土壤環境科學系

文件中的檔案:
檔案 描述 大小格式 
nchu-102-8098039003-1.pdf32.87 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。