Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90225
標題: 建立免疫奈米金球之側層流檢測平臺以快速偵測牛奶中的仙人掌桿菌的汙染
Developing an immunogold nanoparticle-based lateral flow assay for the rapid detection of Bacillus cereus in milk
作者: 許萍芸
Ping-Yun Hsu
關鍵字: Polyclonal antibody
Bacillus cereus
immunogold nanoparticles
lateral flow assay
多株抗體
仙人掌桿菌
免疫奈米金球
側層流試片
引用: 1. Pan TM, Wang TK, Lee CL, Chien SW, Horng CB. 1997. Food-borne disease outbreaks due to bacteria in Taiwan: 1986-1995. Journal of Clinical Microbiology. 35: 1260-1262. 2. Chang JM, Chen TH. 2003. Bacterial food-borne outbreaks in central Taiwan, 1991–2000. Journal of Food and Drug Analysis.1: 53-59. 3. Hauge S. 1955. Food poisoning caused by aerobic spore forming bacilli. Journal of Applied Bacteriology. 18: 591-595. 4. Mortimer PR, McCann G. 1974. Food-poisoning episodes associated with Bacillus cereus in fried rice. The Lancet. 303: 1043-1045. 5. Logan NA. 2011. Bacillus and relatives in foodborne illness. Journal of Applied Microbiology. 112: 417-429. 6. Kramer JM, Gilbert RJ. 1989. Bacillus cereus and other Bacillus species. In: Foodborne Bacterial Pathogens. pp. 21-70. Marcel Dekker, New York, United States. 7. Bottone EJ. 2010. Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews. 23: 382-398. 8. Senesi S, Celandroni F, Salvetti S, Beecher DJ, Wong AC, Ghelardi E. 2002. Swarming motility in Bacillus cereus and characterization of a fliY mutant impaired in swarm cell differentiation. Microbiology. 148: 1785-1794. 9. Schoeni JL, Wong AC. 2005. Bacillus cereus food poisoning and its toxins. Journal of Food Protection. 68: 636-648. 10. Kotiranta A, Lounatmaa K, Haapasalo M. 2000. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes and Infection. 2: 189-198. 11. From C, Pukall R, Schumann P, Hormaz?bal V, Granum PE. 2005. Toxin-producing ability among Bacillus spp. outside the Bacillus cereus group. Applied and Environmental Microbiology. 71: 1178-1183. 12. Baida G, Budarina ZI, Kuzmin NP, Solonin AS. 1999. Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus. FEMS Microbiology Letters. 180: 7–14. 13. Lund T, De Buyser ML, Granum PE. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Molecular Microbiology. 38: 254-261. 14. Steinthorsdottir V, Halld?rsson H, Andr?sson OS. 2000. Clostridium perfringens Beta-toxinforms multimeric transmembrane pores in human endothelial cells. Microbial Pathogenesis. 28:45-50. 15. Gouaux E. 1998. alpha-Hemolysin from Staphylococcus aureus: an archetype of beta-barrel, channel-forming toxins. Journal of Structural Biology. 121:110-122. 16. Dierick K, Van Coillie E, Swiecicka I, Meyfroidt G, Devlieger H, Meulemans A, Hoedemaekers G, Fourie L, Heyndrickx M, Mahillon J. 2005. Fatal family outbreak of Bacillus cereus associated food poisoning. Journal of Clinical Microbiology 43: 4277-4279. 17. Ramarao N, Sanchis V. 2013. The Pore-Forming Haemolysins of Bacillus Cereus: A Review. Toxins. 5: 1119-1139. 18. Spira WM, Goepfert JM. 1972. Bacillus cereus-induced fluid accumulation in rabbit ileal loops. Journal of Applied Microbiology. 24: 341-348. 19. Beecher DJ, Pulido JS, Barney NP & Wong AC. 1995. Extracellular virulence factors in Bacillus cereus endophthalmitis –Methods and implication of involvement of hemolysin BL. Infection and Immunity. 63: 632-639. 20. Lund T, Granum PE. 1997. Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus. Microbiology. 143: 3329-3336. 21. Beecher DJ, Wong AC. 2000. Cooperative, synergistic and antagonistic haemolytic interactions between haemolysin BL, phosphatidylcholine phospholipase C and sphingomyelinase from Bacillus cereus. Microbiology 146: 3033-3039. 22. Beecher DJ, Wong AC. 1997. 1997. Tripartite hemolysin BL from Bacillus cereus. Hemolytic analysis of component interactions and a model for its characteristic paradoxical zone. The Journal of Biological Chemistry. 272: 233-239. 23. Fagerlund A, Lindb?ack T, Storset AK, Granum PE, Hardy SP. 2008. Bacillus cereus Nhe is a pore-forming toxin with structural and functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia. Microbiology. 154: 693-704. 24. Lund T, Granum PE. 1996. Characterisation of a nonhaemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiology Letters. 141: 151-156. 25. Andreeva ZI, Nesterenko VF, Yurkov IS, Budarina ZI, Sineva EV, Solonin AS. 2006. Purification and cytotoxic properties of Bacillus cereus hemolysin II. Protein Expression and Purification. 47: 186-193. 26. Ehling-Schulz M, Fricker M, Scherer S. 2004. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Molecular Nutrition & Food Research. 48: 479-487. 27. Stenfors Arnesen LP, Fagerlund A, Granum PE. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiology Reviews. 32: 579-606. 28. Clavel T, Carlin F, Lairon D, Nguyen-The C & Schmitt P. 2004. Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. Journal of Applied Microbiology. 97: 214-219. 29. Ehling-Schulz M, Vukov N, Schulz A, Shaheen R, Andersson M, M?rtlbauer E, Scherer S. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Applied and Environmental Microbiology. 71: 105-113. 30. Ehling-Schulz M, Fricker M, Grallert H, Rieck P, Wagner M, Scherer S. 2006. Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiologyogy. 6: 20. 31. Agata N, Mori M, Ohta M, Suwan S, Ohtani I, Isobe M. 1994. A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiology Letters. 121: 31-34. 32. Schoeni JL, Wong AC. 2005. Bacillus cereus food poisoning and its toxins. Journal of Food Protection. 68: 636-648. 33. Agata N, Ohta M, Mori M, Isobe M. 1995. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiology Letters. 129: 17-20. 34. Mikkola R, Saris NE, Grigoriev PA, Andersson MA, Salkinoja-Salonen MS. 1999. Ionophoretic properties and mitochondrial effects of cereulide: the emetic toxin of Bacillus cereus. European Journal of Biochemistry. 263: 112-117. 35. Mahler H, Pasi A, Kramer JM, Schulte P, Scoging AC, B?r W, Kr?henb?hl S. 1997. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. The New England Journal of Medicine. 336: 1142-1148. 36. Dietrich R, Moravek M, B?rk C, Granum PE, M?rtlbauer E. 2005. Production and characterization of antibodies against each of the three subunits of the Bacillus cereus nonhemolytic enterotoxin complex. Applied and Environmental Microbiology. 71: 8214-8220. 37. Shinagawa K, Ueno Y, Hu D, Ueda S, Sugii S. 1996. Mouse lethal activity of a HEp-2 vacuolation factor, cereulide, produced by Bacillus cereus isolated from vomiting-type food poisoning. Journal of Veterinary Medical Science. 58: 1027-1029. 38. Paananen A, Mikkola R, Sareneva T, Matikainen S, Hess M, Andersson M, Julkunen I, Salkinoja-Salonen MS, Timonen T. 2002. Inhibition of human natural killer cell activity by cereulide, an emetic toxin from Bacillus cereus. Clinical & Experimental Immunology. 129: 420-428. 39. Agata N, Mori M, Ohta M, Suwan S, Ohtani I, Isobe M. 1994. A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiology Letters. 121: 31-34. 40. Zhou G, Zheng D, Dou L, Cai Q, Yuan Z. 2010. Occurrence of psychrotolerant Bacillus cereus group strains in ice creams. International Journal of Food Microbiology. 137: 143-146. 41. Kotiranta A, Lounatmaa K, Haapasalo M. 2000. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes and Infection. 2: 189-198. 42. Ryu JH, Beuchat LR. 2005. Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer. Journal of Food Protection. 68: 2614-2622. 43. Faille C, Tauveron G, Le Gentil-Leli?vre C, Slomianny C. 2007. Occurrence of Bacillus cereus spores with a damaged exosporium: consequences on the spore adhesion on surfaces of food processing lines. Journal of Food Protection. 70: 2346-2353. 44. Wijman JG, de Leeuw PP, Moezelaar R, Zwietering MH & Abee T. 2007. Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Applied and Environmental Microbiology. 73: 1481-1488. 45. Jaquette CB, Beuchat LR. 1998. Survival and Growth of Psychrotrophic Bacillus cereus in dry and Reconstituted Infant Rice Cereal. Journal of Food Protection. 61: 1629-1635. 46. Lechner S, Mayr R, Francis KP, Pruss BM, Kaplan T, Wiessner-Gunkel E, Stewart GS, Scherer S. 1998. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. International Journal of Systematic Bacteriology. 48: 1373-1382. 47. Ghelardi E, Celandroni F, Salvetti S, Barsotti C, Baggiani A, Senesi S. 2002. Identification and characterization of toxigenic Bacillus cereus isolates responsible for two food-poisoning outbreaks. FEMS Microbiology Letters. 208: 129-34. 48. Gilbert RJ, Kramer JM. 1986. Bacillus cereus food poisoning. In: Progress in Food Safety. pp. 85-93. Food Research Institute, University of Wisconsin-Madison, Madison, WI. 49. Granum PE. 2007. Bacillus cereus. Food Microbiology: Fundamentals and Frontiers. pp. 445–455. ASM Press, Washington, DC. 50. Holmes JR, Plunkett T, Pate P, Roper WL, Alexander WJ. 1981. Emetic food poisoning caused by Bacillus cereus. Arch Intern Med. 141: 766-767. 51. Becker H, Schaller G, von Wiese W, Terplan G. 1994. Bacillus cereus in infant foods and dried milk products. International Journal of Food Microbiology. 23: 1-15. 52. Nichols GL, Little CL, Mithani V, de Louvois J. 1999. The microbiological quality of cooked rice from restaurants and take-away premises in the United Kingdom. Journal of Food Protection. 62: 877-882. 53. Reyes JE, Bast?as JM, Guti?rrez MR, Rodr?guez Mde L. 2007. Prevalence of Bacillus cereus in dried milk products used by Chilean School Feeding Program. Food Microbiology. 24: 1-6. 54. Health Protection Agency. 2009. Guidelines for assessing the microbiological safety of ready-to-eat foods placed on the market. http://www.hpa.org.uk/ webc/HPAweb_C/1259151921557. 55. New South Wales Authority. 2009. Microbiological quality guide for ready-to-eat foods. http://www.foodauthority.nsw.gov.au/_Documents/science/microbiological _quality_guide_for_RTE_food.pdf. 56. Food and Drug Administration in Taiwan. 2009. 食品中毒原因微生物名稱表。http://www.fda.gov.tw/TC/siteContent.aspx?sid=324. 57. U.S. Food and Drug Administration in United States. 2011. Draft Guidance for Industry and Food and Drug Administration Staff Class II Special Controls Guidance Document: In Vitro Diagnostic Devices for Bacillus spp. Detection. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM255631.pdf. 58. European Food Safety Authority. 2005. COMMISSION REGULATION (EC) No 2073/2005 on microbiological criteria for foodstuffs. http://www.fsai.ie/uploaded Files/Reg2073_2005(1).pdf. 59. Ministry of Health, Labour and Welfare. 2005. 冷凍食品規格?調? (?括報告)。http://www.mhlw.go.jp/shingi/ 2006/05/dl/s0522-5d.pdf. 60. Ministry of Health, Labour and Welfare. 2011. 食品中?取扱。http://www.mhlw.go.jp/stf/shingi/ 2r985200000136n1-att/2r985200000138m2.pdf. 61. Ministry of Health of the People's Republic of China. 2010. 食品安全?家?准食品中致病菌限量。https://www.google.com.au/url?sa=t&rct=j&q= &esrc=s&source=web&cd=5&ved=0CFwQFjAE&url=http%3A%2F%2Fwww.ahwst.gov.cn%2Fupload%2F2010-12%2F2010121708455650038646096.doc&ei=I_DxUdSsE82viQf564G4BA&usg=AFQjCNFbszMVsCThjjwgA5PTg5bmoVCmkA&sig2=pZtCCFJD2vYwxMPrLvE9oQ. 62. Food and Drug Administration in Taiwan. 2009. 優良農產品食米項目驗證基準。http://www.cas.org.tw/images_B1/%E9%99%84%E4%BB%B6%E5%9B%9B+%E5%84%AA%E8%89%AF%E8%BE%B2%E7%94%A2%E5%93%81%E9%A3%9F%E7%B1%B3%E9%A0%85%E7%9B%AE%E9%A9%97%E8%AD%89%E5%9F%BA%E6%BA%96.pdf. 63. Smarda J, Smajs D, Komrska J, Krzyz?nek V. 2002. S-layers on cell walls of cyanobacteria. Micron. 33: 256-277. 64. Claus, H., Ak?a, E., Debaerdemaeker, T., Evrard, C., Declercq, J.-P., K?nig, H., 2002. Primary structure of selected archaeal mesophilic and extremely thermophilic outer surface layer proteins. Syst Journal of Applied Microbiology. 25: 3-–12. 65. Sch?ffer C, Messner P. 2004. Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology. Glycobiology. 14: 31R-42R. 66. Eichler J, Adams MWW. 2005. Posttranslational protein modification in Archaea. Microbiology and Molecular Biology Reviews. 69: 393-425. 67. Bayan N, Houssin C, Chami M, Leblon G. 2003. Mycomembrane and S-layer: two important structures of Cornyebacterium glutamicum cell envelope with promising biotechnology applications. Journal of Biotechnology. 104: 55-67. 68. Knoll W, Naumann R, Friedrich M, Robertson JW, L?sche M, Heinrich F, McGillivray DJ, Schuster B, Gufler PC, Pum D, Sleytr UB. 2008. Solid supported lipid membranes: new concepts for the biomimetic functionalization of solid surfaces. Biointerphases. 3: FA125. 69. Pum D, Sleytr UB. 1999. The application of bacterial S-layers in molecular nanotechnology. Trends in Biotechnology. 17: 8-12. 70. Poobalane S, Thompson KD, Ard? L, Verjan N, Han HJ, Jeney G, Hirono I, Aoki T, Adams A. 2010. Production and efficacy of an Aeromonas hydrophila recombinant S-layer protein vaccine for fish. Vaccine. 28: 3540-3547. 71. Sleytr UB, Messner P, Pum D, Sara M. 1996. Crystalline bacterial cell surface proteins. pp. 1-3. R.G. Landes Company, Georgetown, Academic Press, INC., San Diego. 72. Sleytr UB, Beveridge TJ. 1999. Bacterial S-layers. Trends in Microbiology. 7:253-260. 73. Beveridge TJ, Pouwels PH, S?ra M, Kotiranta A, Lounatmaa K, Kari K, Kerosuo E, Haapasalo M, Egelseer EM, Schocher I, Sleytr UB, Morelli L, Callegari ML,Nomellini JF, Bingle WH, Smit J, Leibovitz E, Lemaire M, Miras I, Salamitou S, B?guin P, Ohayon H, Gounon P, Matuschek M, Koval SF. 1997. Functions of S-layers. FEMS Microbiology Reviews. 20: 99-149. 74. Wang B, Kraig E, Kolodrubetz, D. 2000. Use of defined mutants to assess the role of the Campylobacter rectus S-layer in bacterium–epithelial cell interactions. Infection and Immunity. 68, 1465-1473. 75. Kotiranta A, Haapasalo M, Kari K, Kerosuo E, Olsen I, Sorsa T, Meurman JH, Lounatmaa K. 1998. Surface structure, hydrophobicity, phagocytosis, and adherence to matrix proteins of Bacillus cereus cells with and without the crystalline surface protein layer. Infection and Immunity. 66: 4895-4902. 76. Chen CH, Ding HC, Chang TC. 2001. Rapid identification of Bacillus cereus based on the detection of a 28.5-kilodalton cell surface antigen. Journal of Food Protection. 64: 348-354. 77. Bhunia AK, Johnson MG. 1992. Monoclonal antibody specific for Listeria monocytogenes associated with a 66-kilodalton cell surface antigen. Applied and Environmental Microbiology. 58:1924-1929. 78. Hearty S, Leonard P, Quinn J, O'Kennedy R. 2006. Production, characterisation and potential application of a novel monoclonal antibody for rapid identification of virulent Listeria monocytogenes. Journal of Microbiological Methods. 66: 294-312 79. Mendon?a M, Conrad NL, Concei??o FR, Moreira AN, da Silva WP, Aleixo JA, Bhunia AK. 2012. Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii. BMC Microbiology. 12: 275-289. 80. Bierne, H, Cossart P. 2007. Listeria monocytogenes Surface Proteins: from Genome Predictions to Function. Microbiology and Molecular Biology Reviews. 71: 377-397. 81. Jia L, Xiaomin H, Jianpin Y, Zhiming Y. 2009. Species-specific cell wall binding affinity of the S-layer proteins of mosquitocidal bacterium Bacillus sphaericus C3-41. Applied and Environmental Microbiology. 75: 3891-3895. 82. Kulshreshtha P, Aggarwal S, Jaiswal H, Bhatnagar R. 2012. S-layer homology motif is an immunogen and confers protection to mouse model against anthrax. Molecular Immunology. 50: 18-25. 83. Plotz CM, Singer JM. 1956. The latex fixation test. Application to the serologic diagnosis of rheumatoid arthritis. American Journal of Medicine. 21: 888-892. 84. Berson SA, Yalow RS. 1959. Quantitative aspects of the reaction between insulin and insulin binding antibody. Journal of Clinical Investigation. 38: 1996-2016. 85. O?Farrell B, Chun P, Faulstich K, Gruler R, Eberhard M, Lentzch D. 2009. Lateral flow immunoassay. pp. 1-14. Humana Press, NY. 86. Vaitukaitis JL, Braunstein GD, Ross GT. 1972. A radioimmunoassay which specifically measures human chorionic gonadotropin in the presence of human luteinizing hormone. American Journal of Obstetrics and Gynecology. 15: 751-758. 87. Wong RC, Tse HY. 2009. Lateral flow immunoassay. pp.7-15, 82-83. Springer, New York, United States. 88. Kolosova AY, De Saeger S, Sibanda L, Verheijen R, Van Peteghem C. 2007. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of zearalenone and deoxynivalenol. Analytical and Bioanalytical Chemistry. 389: 2103-2107. 89. Li CZ, Vandenberg K, Prabhulkar S, Zhu X, Schneper L, Methee K, Rosser CJ, Almeide E. 2011. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosensors and Bioelectronics. 26: 4342-4348. 90. Zhang D, Li P, Zhang Q, Li R, Zhang W, Ding X, Li CM. 2012. A naked-eye based strategy for semiquantitative immunochromatographic assay. Analytica Chimica Acta. 740: 74-79. 91. Paek SH, Lee SH, Cho JH, Kim YS. 2000. Development of rapid one-step immunochromatographic assay. Methods. 22: 53-60. 92. Qian S. Bau HH. 2004. Analysis of lateral flow biodetectors: competitive format. Analytical Biochemistry. 326: 211-224. 93. Posthuma-Trumpie GA, Korf J, van Amerongen A. 2009. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Analytical and Bioanalytical Chemistry. 393: 569-582. 94. Ngom B, Guo Y, Wang X, Bi D. 2010. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Analytical and Bioanalytical Chemistry. 397:1113-1135. 95. Fong WK, Modrusan Z, McNevin JP, Marostenmaki J, Zin B, Bekkaoui F. 2000. Rapid solid-phase immunoassay for detection of methicillin-resistant Staphylococcus aureus using cycling probe technology. Journal of Clinical Microbiology. 38: 2525-2529. 96. Soo PC, Horng YT, Hsueh PR, Shen BJ, Wang JY, Tu HH, Wei JR, Hsieh SC, Huang CC, Lai HC. 2006. Direct and simultaneous identification of Mycobacterium tuberculosis (MTB) by rapid multiplex nested PCR-ICT assay. Journal of Microbiological Methods. 66: 440-448. 97. Faraday M. 1857. Experimental Relations of Gold (and Other Metals) to Light. Philosophical Transactions of the Royal Society of London. 147: 145-181. 98. Faulk WP, Taylor GM. 1971. An immunocolloid method for the electron microscope. Immunochemistry. 8:1081-1083. 99. J. Turkevich. 1985. Colloidal gold part II: colour, coagulation, adhesion, alloying and catalytic properties. Gold Bull. 18: 125-131. 100. Liu S, Leech D, Ju H. 2003. Application of Colloidal Gold in Protein Immobilization, Electron Transfer, and Biosensing. Analytical Letters. 36: 1-19. 101. Fan A, Lau C, Lu J. 2005. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Analytical Chemistry. 77: 3238-3242. 102. Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ. 2008. Biological applications of gold nanoparticles. Chemical Society Reviews. 37: 1896-1908. 103. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. 2006. Turkevich method for gold nanoparticle synthesis revisited. Journal of Physical Chemistry B. 110: 15700-15707. 104. Perrault SD, Chan WCW. 2009. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. Journal of the American Chemical Society. 131: 17042-17043. 105. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. 1994. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chemical Communications. 7: 801. 106. Zhang J, Du J, Han B, Liu Z, Jiang T, Zhang Z. 2006. Sonochemical formation of single-crystalline gold nanobelts. Angewandte Chemie. 118: 1134-1137. 107. Persoons A, Verbiest T. 2006. An experimental study on preparation of gold nanoparticles and their properties. Department Chemie, Afdeling Moleculaire en nanomaterialen. 108. Khlebtsov BN, Khlebtsov NG. 2011. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Journal of Colloid and Interface Science. 73: 118-127. 109. Arnault JC, Templierb C, Delafondb J, Bouffardc S, Garemb H. 1995. TEM and AFM study of gold thin film nucleation and growth. Surface and Coatings Technology. 71: 45-52. 110. Etesami M, Mohamed N. 2011. Catalytic Application of Gold Nanoparticles Electrodeposited by Fast Scan Cyclic Voltammetry to Glycerol Electrooxidation in Alkaline Electrolyte. International Journal of Electrochemical Science. 6: 4676-7689. 111. Bonanni A, Pumera M, Miyahara Y. 2011. Influence of gold nanoparticle size (2-50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study. Physical Chemistry Chemical Physics. 13: 4980-4986. 112. Ljungblad J. 2009. Antibody-conjugated Gold Nanoparticles integrated in a Fluorescence based Biochip. Pp. 19-22. Department of Physics, Chemistry and Biology, Link?pings Universitet, Link?ping, Sweden. 113. Wagner SC, Roskamp M, C?lfen H, B?ttcher C, Schlecht S, Koksch B. 2009. Switchable electrostatic interactions between gold nanoparticles and coiled coil peptides direct colloid assembly. Organic and Biomolecular Chemistry. 7: 46-51. 114. Zhang D, Li P, Yang Y, Zhang Q, Zhang W, Xiao Z, Ding X. 2011. A high selective immunochromatographic assay for rapid detection of aflatoxin B?. Talanta. 85: 736-742. 115. Zhang DH, Li PW, Zhang Q, Yang Y, Zhang W, Guan D, Ding XX. 2012. Extract-free immunochromatographic assay for on-site tests of aflatoxin M1 in milk. Analytical Methods. 4: 3307-3313. 116. Zhang D, Li P, Zhang Q, Zhang W. 2011. Ultrasensitive nanogold probe-based immunochromatographic assay for simultaneous detection of total aflatoxins in peanuts. Biosensors and Bioelectronics. 26: 2877-2882. 117. Anfossi L, Giovannoli C, Giraudi G, Biagioli F, Passini C, Baggiani C. 2012. A lateral flow immunoassay for the rapid detection of ochratoxin A in wine and grape must. Journal of Agricultural and Food Chemistry. 60: 11491-11497. 118. Liu G, Han Z, Nie DX, Yang JH, Zhao ZH, Zhang JB, Li HP, Liao YC, Song SQ, Saeger SD, De S, Wu AB. 2012. Rapid and sensitive quantitation of zearalenone in food and feed by lateral flow immunoassay. Food Control. 27: 200-205. 119. Wang YK, Yan YX, Ji WH, Wang HA, Li SQ, Zou Q, Sun JH. 2013. Rapid simultaneous quantification of zearalenone and fumonisin B1 in corn and wheat by lateral flow dual immunoassay. Journal of Agricultural and Food Chemistry. Epub ahead of print 120. Yu CY, Ang GY, Chua AL, Tan EH, Lee SY, Falero-Diaz G, Otero O, Rodr?guez I, Reyes F, Acosta A, Sarmiento ME, Ghosh S, Ramamurthy T, Yean Yean C, Lalitha P, Ravichandran M. 2011. Dry-reagent gold nanoparticle-based lateral flow biosensor for the simultaneous detection of Vibrio cholerae serogroups O1 and O139. Journal of Microbiological Methods. 86: 277-282. 121. Pengsuk C, Chaivisuthangkura P, Longyant S, Sithigorngul P. 2013. Development and evaluation of a highly sensitive immunochromatographic strip test using gold nanoparticle for direct detection of Vibrio cholerae O139 in seafood samples. Biosensors and Bioelectronics. 42: 229-235. 122. Jung BY, Jung SC, Kweon CH. 2005. Development of a rapid immunochromatographic strip for detection of Escherichia coli O157. Journal of Food Protection. 68: 2140-2143. 123. Moongkarndi P, Rodpai E, Kanarat S. 2011. Evaluation of an immunochromatographic assay for rapid detection of Salmonella enterica serovars Typhimurium and Enteritidis. Journal of Veterinary Diagnostic Investigation. 23: 797-801. 124. Ching KH, Lin A, McGarvey JA, Stanker LH, Hnasko R. 2012. Rapid and selective detection of botulinum neurotoxin serotype-A and -B with a single immunochromatographic test strip. Journal of Immunological Methods. 380: 23-29. 125. Huang SH, Wei HC, LeeYC. 2007. One-step immunochromatographic assay for the detection of Staphylococcus aureus. Food Control. 18: 893-897 126. Yonekita T, Fujimura T, Morishita N, Matsumoto T, Morimatsu F. 2013. Simple, rapid, and reliable detection of Escherichia coli O26 using immunochromatography. Journal of Food Protection. 76: 748-754. 127. Shyu RH, Tang SS, Chiao DJ, Hung YW. 2010. Gold nanoparticle-based lateral flow assay for detection of staphylococcal enterotoxin B. Food Chemistry. 118: 462-466. 128. Yang W, Li XB, Liu GW, Zhang BB, Zhang Y, Kong T, Tang JJ, Li DN, Wang Z. 2011. A colloidal gold probe-based silver enhancement immunochromatographic assay for the rapid detection of abrin-a. Biosensors and Bioelectronics. 26: 3710-3713. 129. Harlow E, Lane D. 1988. Antibodies: a laboratory manual. pp.148-242. Cold Spring Harbor Laboratory, New York, United States. 130. Frens G. 1973. Controlled nucleation for regulation of particle-size in minodisperse old suspensions. Nature Physics. 241: 20-22. 131. Lou S, Ye JY, Li KQ, Wu A. 2012. A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size. Analyst. 137:1174-1181. 132. 1992. Evaluation of precision performance of clinical chemistry devices; Tentative Guideline. NCCLS Document EP5-T2, 2nd ed., National Committee for Clinical Laboratory Standards, Villanova, PA. 133. Pontell, Emile B. 2008. Immune tolerance research developments. pp. 19-26. Nova Biomedical, New York, United States. 134. Miura K, Orcutt AC, Muratova OV, Miller LH, Saul A, Long CA. 2008. Development and characterization of a standardized ELISA including a reference serum on each plate to detect antibodies induced by experimental malaria vaccines. Vaccine. 26: 193-200. 135. Jennifer LS. 1999. Current Protocols in Cell Biology. pp. 16.1.4-16.1.16. John Wiley & Sons Inc, New York, United States. 136. Wagner Lab. Cell Fusion/Hybridoma Production Protocol. 2007. pp. 1-3. Cornell University. New York, United States. 137. Luppa PB, Sokoll LJ, Chan DW. 2001. Immunosensors-principles and applications to clinical chemistry. Clinica Chimica Acta. 314: 1-26. 138. Lin M, Todoric D, Mallory M, Luo BS, Trottier E, Dan H. 2006. Monoclonal antibodies binding to the cell surface of Listeria monocytogenes serotype 4b. Journal of Medical Microbiology. 55: 291-299. 139. Vordermeier HM, Harris DP, Moreno C, Singh M, Ivanyi J. 1995. The nature of the immunogen determines the specificity of antibodies and T cells to selected peptides of the 38 kDa mycobacterial antigen. International Immunology. 7: 559-566. 140. Haw MD. 2002. Colloidal suspensions, Brownian motion, molecular reality: a short history. Journal of Physics. 14: 7769-7779. 141. Makhsin SR, Razak KA, Noordin R, Zakaria ND, Chun TS. 2012. The effects of size and synthesis methods of gold nanoparticle-conjugated MαHIgG4 for use in an immunochromatographic strip test to detect brugian filariasis. Nanotechnology. 23: 495719-495731. 142. Sonavane G, Tomoda K, Makino K. 2008. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids and Surfaces B: Biointerfaces. 24: 2836-2841. 143. Jia CP, Zhong XQ, Hua B, Liu MY, Jing FX, Lou XH, Yao SH, Xiang JQ, Jin QH, Zhao JL. 2009. Nano-ELISA for highly sensitive protein detection. Biosensors and Bioelectronics. 24: 2836-2841. 144. Kumar S, Aaron J, Sokolov K. 2008. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nature Protocols. 3: 314-320. 145. Wen HW, Borejsza-Wysocki W, DeCory TR, Durst RA. 2005. Development of a competitive liposome-based lateral flow assay for the rapid detection of the allergenic peanut protein Ara h1. Analytical and Bioanalytical Chemistry. 382: 1217-1226. 146. Lee EH, Kim YA, Lee YT, Hammock BD, Lee HS. 2013. Competitive immunochromatographic assay for the detection of the organophosphorus pesticide EPN. Food and Agricultural Immunology. 24: 129-138. 147. 2008. Rapid lateral flow test strips. pp. 6, 10-11, 25-31. Millipore. Billerica, MA. 148. Fang C, Chen Z, Li L, Xia J. 2011. Barcode lateral flow immunochromatographic strip for prostate acid phosphatase determination. Journal of Pharmaceutical and Biomedical Analysis. 56: 1035-1040. 149. Wang J, Wang Z, Liu J, Li H, Li QX, Li J, Xu T. 2013. Nanocolloidal gold-based immuno-dip strip assay for rapid detection of Sudan red I in food samples. Food Chemistry. 136: 1478-1483. 150. Liu N, Nie DX, Han Z, Yang XL, Zhao ZY, Shen JN, Liu G, Wu AB, Zheng XD. 2013. Rabbit monoclonal antibody-based lateral flow immunoassay platform for sensitive quantitation of four sulfonamide residues in milk and swine urine. Analytical Letters. 46: 286-298. 151. Charni N, Perissol C, Petit JL, Rugani N. 2000. Production and Characterization of Monoclonal Antibodies against Vegetative Cells of Bacillus cereus. Applied and Environmental Microbiology. 66: 2278-2281. 152. Lee J, Kwon GH, Park JY, Park CS, Kwon DY, Lim J, Kim JS, Kim JH. 2011. A RAPD-PCR method for the rapid detection of Bacillus cereus. Journal of Microbiology and Biotechnology. 21: 274-276. 153. Hansen BM, Leser TD, Hendriksen NB. 2001. Polymerase chain reaction assay for the detection of Bacillus cereus group cells. FEMS Microbiology Letters. 202: 209-213. 154. Fricker M, Messelh?u?er U, Busch U, Scherer S, Monika ES. 2007. Diagnostic Real-Time PCR Assays for the Detection of Emetic Bacillus cereus Strains in Foods and Recent Food-Borne Outbreaks. Applied and Environmental Microbiology. 73: 1892-1898. 155. Chu PT, Hsieh MF, Yin SY, Wen HW. 2009. Development of a rapid and sensitive immunomagnetic-bead based assay for detecting Bacillus cereus in milk. European Food Research and Technology. 229: 73-81. 156. Manzano M, Giusto C, Iacumin L, Cantoni C, Comi G. 2003. A molecular method to detect Bacillus cereus from a coffee concentrate sample used in industrial preparations. Journal of Applied Microbiology. 95: 1361-1366. 157. Blazkov? M, Mickov?-Holubov? B, Rauch P, Fukal L. 2009. Immunochromatographic colloidal carbon-based assay for detection of methiocarb in surface water. Biosensors and Bioelectronics. 25: 753-758.
摘要: Since foodborne diseases and outbreaks increase considerably, food safety is always a widely held concern with respect to human health in the world. According to the suevey results in 2007 to 2012 from the Center for Disease Cotrol (CDC) of the Department of Health in Taiwan, Bacillus cereus was rated as a common pathoge in food poisoning, with approximately 17%patients were infected. Instead of conventional detecting methods for which require time, skilled technicians and special equipment, lateral flow assay (LFA) utilizing the specific binding between antigen and antibody is currently as an on-site detection tool applied in the realm of environmental, food and clinical analyses. Therefore, in this study, a rapid, simple, snesitive and specific LFA strip using polyclonal antibody we raised against 28.5-kDa cell surface protein of B. cereus and 30-nm immunogold nanoparticles had been successfully deveoped for the detection of B. cereus in milk. Whole assay could be completed within 20min. The visual detection limit (VDL) was determined as 10^3 CFU/mL with the dynamic range from 10^4 to 10^8 CFU/mL in both phosphate buffer (PB) system and milk samples, showing a high sensitivity to B.cereus. The specificity of LFA was also good, despite a little reactivity with Vibrio parahaemolyticus. The semi-quantitative results of the strip assay were in a good agreement with those of conventional spread plate method. In the precision analysis, the coefficients of variation (CV) of intra- and inter-assay were 9.6% and 12.8%, indicating hogh result reproducibility. Hence, the polyclonal antibody-based LFA platform we developed has a great potential as a user-friendly, rapid and sensitive on-site tool for detecting B. cereus in milk. within 20min. The visual detection limit (VDL) was determined as 10^3 CFU/mL with the dynamic range from 10^4 to 10^8 CFU/mL in both phosphate buffer (PB) system and milk samples, showing a high sensitivity to B.cereus. The specificity of LFA was also good, despite a little reactivity with Vibrio parahaemolyticus. The semi-quantitative results of the strip assay were in a good agreement with those of conventional spread plate method. In the precision analysis, the coefficients of variation (CV) of intra- and inter-assay were 9.6% and 12.8%, indicating hogh result reproducibility. Hence, the polyclonal antibody-based LFA platform we developed has a great potential as a user-friendly, rapid and sensitive on-site tool for detecting B. cereus in milk.
URI: http://hdl.handle.net/11455/90225
文章公開時間: 2017-08-31
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.