Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90238
標題: 果膠與明膠複合體提升優格發酵劑的抗凍性及儲存存活率之研究
Research of pectin and gelatin complex coacervation on improving yogurt starters in freeze resistance and storage viability
作者: 林哲毅
Che-Yi Lin
關鍵字: Lactic acid bacteria
Complex Coacervation
Yogurt starter
Freeze drying
Pectin
Gelatin
Freeze resistance
Storage viability
乳酸菌
複合凝聚
優格發酵劑
冷凍乾燥
果膠
明膠
抗凍性
儲存存活率
引用: 廖啟成。2006。乳酸菌之分類及應用。食工所,乳酸菌專輯。3-15 徐崇榮、何佳靜、陳智信、王仁俊、黃耿祥、揚智惠。科學發展 473期2012年5月,冷凍真空乾燥。 中華民國國家標準CNS10890食品微生物檢驗-生菌數之檢測法」。 中華民國國家標準CNS 14760 乳品檢驗法-乳酸菌之檢驗。 曾馨誼。中華穀類食品工業技術研究所100年10月13日,國內保健食品產值技產業現況分析。 Amit-Romach, E., Uni, Z., & Reifen, R. (2010). Multistep mechanism of probiotic bacterium, the effect on innate immune system. Mol Nutr Food Res, 54(2), 277-284. Bibel, D. J. (1982). Sternberg, Metchnikoff, and the phagocytes. Mil Med, 147(7), 550-553. Blaut, M. (2002). Relationship of prebiotics and food to intestinal microflora. Eur J Nutr, 41 Suppl 1, I11-16. Bridge, P. D., & Sneath, P. H. (1983). Numerical taxonomy of Streptococcus. J Gen Microbiol, 129(3), 565-597. Briggs, M., Tull, G., Newland, L. G., & Briggs, C. A. (1955). The preservation of Lactobacilli by freeze-drying. J Gen Microbiol, 12(3), 503-512. Carasi, P., Ambrosis, N. M., De Antoni, G. L., Bressollier, P., Urdaci, M. C., & Serradell Mde, L. (2014). Adhesion properties of potentially probiotic Lactobacillus kefiri to gastrointestinal mucus. J Dairy Res, 81(1), 16-23. Cazzola, M., Tompkins, T. A., & Matera, M. G. (2010). Immunomodulatory impact of a synbiotic in T(h)1 and T(h)2 models of infection. Ther Adv Respir Dis, 4(5), 259-270. Charlet, M., Duboz, G., Faurie, F., Le Quere, J. L., & Berthier, F. (2009). Multiple interactions between Streptococcus thermophilus, Lactobacillus helveticus and Lactobacillus delbrueckii strongly affect their growth kinetics during the making of hard cooked cheeses. Int J Food Microbiol, 131(1), 10-19. Chiu, Y. H., Tsai, J. J., Lin, S. L., & Lin, M. Y. (2014). Lactobacillus casei MYL01 modulates the proinflammatory state induced by ethanol in an in vitro model. J Dairy Sci, 97(4), 2009-2016. Cross, M. L. (2002). Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol Med Microbiol, 34(4), 245-253. de Moreno de Leblanc, A., & Perdigon, G. (2010). The application of probiotic fermented milks in cancer and intestinal inflammation. Proc Nutr Soc, 69(3), 421-428. Deasy, P. B., & O'Connell, M. J. (1984). Correlation of surface characteristics with ease of production and in vitro release of sodium salicylate from various enteric coated microcapsules prepared by pan coating. J Microencapsul, 1(3), 217-227. Di Cagno, R., Surico, R. F., Minervini, G., Rizzello, C. G., Lovino, R., Servili, M., . . . Gobbetti, M. (2011). Exploitation of sweet cherry (Prunus avium L.) puree added of stem infusion through fermentation by selected autochthonous lactic acid bacteria. Food Microbiol, 28(5), 900-909. Digiulio, A., & Fichera, S. (1991). Freeze-Drying in Food-Industry. Industrie Alimentari, 30(298), 953-959. Ejtahed, H. S., Mohtadi-Nia, J., Homayouni-Rad, A., Niafar, M., Asghari-Jafarabadi, M., & Mofid, V. (2012). Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition, 28(5), 539-543. Felis, G. E., & Dellaglio, F. (2007). Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol, 8(2), 44-61. Freitas, S., Rudolf, B., Merkle, H. P., & Gander, B. (2005). Flow-through ultrasonic emulsification combined with static micromixing for aseptic production of microspheres by solvent extraction. Eur J Pharm Biopharm, 61(3), 181-187. Gerez, C. L., Font de Valdez, G., Gigante, M. L., & Grosso, C. R. (2012). Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Lett Appl Microbiol, 54(6), 552-556. Givry, S., & Duchiro, F. (2008). Optimization of culture medium and growth conditions for production of L-arabinose isomerase and D-xylose isomerase by Lactobacillus bifermentans. Mikrobiologiia, 77(3), 324-330. Hamad, M., Muta'eb, E., Abu-Shaqra, Q., Fraij, A., Abu-Elteen, K., & Yasin, S. R. (2006). Utility of the oestrogen-dependent vaginal candidosis murine model in evaluating the efficacy of various therapies against vaginal Candida albicans infection. Mycoses, 49(2), 104-108. Hamman, J. H. (2010). Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems. Marine Drugs, 8(4), 1305-1322. Hitchcock, D. I. (1931). The Isoelectric Point of a Standard Gelatin Preparation. J Gen Physiol, 14(6), 685-699. Holzapfel, W. H., Haberer, P., Snel, J., Schillinger, U., & Huis in't Veld, J. H. (1998). Overview of gut flora and probiotics. Int J Food Microbiol, 41(2), 85-101. Jain, S., Yadav, H., Sinha, P. R., Kapila, S., Naito, Y., & Marotta, F. (2010). Anti-allergic effects of probiotic Dahi through modulation of the gut immune system. Turk J Gastroenterol, 21(3), 244-250. Kastner, H., Kern, K., Wilde, R., Berthold, A., Einhorn-Stoll, U., & Drusch, S. (2014). Structure formation in sugar containing pectin gels - influence of tartaric acid content (pH) and cooling rate on the gelation of high-methoxylated pectin. Food Chem, 144, 44-49. Khoramnia, A., Abdullah, N., Liew, S. L., Sieo, C. C., Ramasamy, K., & Ho, Y. W. (2011). Enhancement of viability of a probiotic Lactobacillus strain for poultry during freeze-drying and storage using the response surface methodology. Anim Sci J, 82(1), 127-135. Kullisaar, T., Songisepp, E., Mikelsaar, M., Zilmer, K., Vihalemm, T., & Zilmer, M. (2003). Antioxidative probiotic fermented goats' milk decreases oxidative stress-mediated atherogenicity in human subjects. Br J Nutr, 90(2), 449-456. Lakritz, J. R., Poutahidis, T., Levkovich, T., Varian, B. J., Ibrahim, Y. M., Chatzigiagkos, A., . . . Erdman, S. E. (2014). Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice. Int J Cancer, 135(3), 529-540. Lee, J., Hwang, K. T., Heo, M. S., Lee, J. H., & Park, K. Y. (2005). Resistance of Lactobacillus plantarum KCTC 3099 from Kimchi to oxidative stress. J Med Food, 8(3), 299-304. Lenaz, G. (2001). The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life, 52(3-5), 159-164. Li, J., Zhang, W., Wang, C., Yu, Q., Dai, R., & Pei, X. (2012). Lactococcus lactis expressing food-grade beta-galactosidase alleviates lactose intolerance symptoms in post-weaning Balb/c mice. Appl Microbiol Biotechnol, 96(6), 1499-1506. Liapis, A. I., & Bruttini, R. (1994). A Theory for the Primary and Secondary Drying Stages of the Freeze-Drying of Pharmaceutical Crystalline and Amorphous Solutes - Comparison between Experimental-Data and Theory. Separations Technology, 4(3), 144-155. Lin, M. Y., & Chang, F. J. (2000). Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig Dis Sci, 45(8), 1617-1622. Lomasney, K. W., Cryan, J. F., & Hyland, N. P. (2014). Converging effects of a Bifidobacterium and Lactobacillus probiotic strain on mouse intestinal physiology. Am J Physiol Gastrointest Liver Physiol, 307(2), G241-247. Mackenzie, A. P. (1988). The Theory of Freeze-Drying. Abstracts of Papers of the American Chemical Society, 196, 19-Cell. Magnin, D., Lefebvre, J., Chornet, E., & Dumitriu, S. (2004). Physicochemical and structural characterization of a polyionic matrix of interest in biotechnology, in the pharmaceutical and biomedical fields. Carbohydrate Polymers, 55(4), 437-453. Mazlyn, M. M., Nagarajah, L. H., Fatimah, A., Norimah, A. K., & Goh, K. L. (2013). Effects of a probiotic fermented milk on functional constipation: a randomized, double-blind, placebo-controlled study. J Gastroenterol Hepatol, 28(7), 1141-1147. Mojgani, N., Hussaini, F., & Vaseji, N. (2015). Characterization of indigenous lactobacillus strains for probiotic properties. Jundishapur J Microbiol, 8(2), e17523. Nakayama, Y., & Matsuda, T. (1995). Newly designed hemostatic technology based on photocurable gelatin. ASAIO J, 41(3), M374-378. Ojetti, V., Ianiro, G., Tortora, A., D'Angelo, G., Di Rienzo, T. A., Bibbo, S., . . . Gasbarrini, A. (2014). The effect of Lactobacillus reuteri supplementation in adults with chronic functional constipation: a randomized, double-blind, placebo-controlled trial. J Gastrointestin Liver Dis, 23(4), 387-391. Pan, L. X., Fang, X. J., Yu, Z., Xin, Y., Liu, X. Y., Shi, L. E., & Tang, Z. X. (2013). Encapsulation in alginate-skim milk microspheres improves viability of Lactobacillus bulgaricus in stimulated gastrointestinal conditions. Int J Food Sci Nutr, 64(3), 380-384. Park, Y. H., Kim, J. G., Shin, Y. W., Kim, H. S., Kim, Y. J., Chun, T., . . . Whang, K. Y. (2008). Effects of Lactobacillus acidophilus 43121 and a mixture of Lactobacillus casei and Bifidobacterium longum on the serum cholesterol level and fecal sterol excretion in hypercholesterolemia-induced pigs. Biosci Biotechnol Biochem, 72(2), 595-600. Parvez, S., Malik, K. A., Ah Kang, S., & Kim, H. Y. (2006). Probiotics and their fermented food products are beneficial for health. J Appl Microbiol, 100(6), 1171-1185. Pascual, M., Hugas, M., Badiola, J. I., Monfort, J. M., & Garriga, M. (1999). Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Appl Environ Microbiol, 65(11), 4981-4986. Pop, O. L., Brandau, T., Schwinn, J., Vodnar, D. C., & Socaciu, C. (2015). The influence of different polymers on viability of Bifidobacterium lactis 300b during encapsulation, freeze-drying and storage. J Food Sci Technol, 52(7), 4146-4155. Priya, A. J., Vijayalakshmi, S. P., & Raichur, A. M. (2011). Enhanced survival of probiotic Lactobacillus acidophilus by encapsulation with nanostructured polyelectrolyte layers through layer-by-layer approach. J Agric Food Chem, 59(21), 11838-11845. Raha, S., & Robinson, B. H. (2000). Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci, 25(10), 502-508. Rawat, K., Aswal, V. K., & Bohidar, H. B. (2012). DNA-gelatin complex coacervation, UCST and first-order phase transition of coacervate to anisotropic ion gel in 1-methyl-3-octylimidazolium chloride ionic liquid solutions. J Phys Chem B, 116(51), 14805-14816. Russell, D. A., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2011). Metabolic activities and probiotic potential of bifidobacteria. Int J Food Microbiol, 149(1), 88-105. Sah, B. N., Vasiljevic, T., McKechnie, S., & Donkor, O. N. (2014). Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt. Food Chem, 156, 264-270. Sanders, M. E. (2008). Probiotics: definition, sources, selection, and uses. Clin Infect Dis, 46 Suppl 2, S58-61; discussion S144-151. Sharma, M., & Devi, M. (2014). Probiotics: a comprehensive approach toward health foods. Crit Rev Food Sci Nutr, 54(4), 537-552. Shyu, P. T., Oyong, G. G., & Cabrera, E. C. (2014). Cytotoxicity of probiotics from Philippine commercial dairy products on cancer cells and the effect on expression of cfos and cjun early apoptotic-promoting genes and Interleukin-1 beta and Tumor Necrosis Factor-alpha proinflammatory cytokine genes. Biomed Res Int, 2014, 491740. Silva, K. R., Rodrigues, S. A., Filho, L. X., & Lima, A. S. (2009). Antimicrobial activity of broth fermented with kefir grains. Appl Biochem Biotechnol, 152(2), 316-325. Singhi, S. C., & Baranwal, A. (2008). Probiotic use in the critically ill. Indian J Pediatr, 75(6), 621-627. Stanton, C., Ross, R. P., Fitzgerald, G. F., & Van Sinderen, D. (2005). Fermented functional foods based on probiotics and their biogenic metabolites. Curr Opin Biotechnol, 16(2), 198-203. Stevens, M. J., Wiersma, A., de Vos, W. M., Kuipers, O. P., Smid, E. J., Molenaar, D., & Kleerebezem, M. (2008). Improvement of Lactobacillus plantarum aerobic growth as directed by comprehensive transcriptome analysis. Appl Environ Microbiol, 74(15), 4776-4778. Suo, H., Zhao, X., Qian, Y., Li, G., Liu, Z., Xie, J., & Li, J. (2014). Therapeutic effect of activated carbon-induced constipation mice with Lactobacillus fermentum Suo on treatment. Int J Mol Sci, 15(12), 21875-21895. Talwalkar, A., & Kailasapathy, K. (2003). Metabolic and biochemical responses of probiotic bacteria to oxygen. J Dairy Sci, 86(8), 2537-2546. Thakur, B. R., Singh, R. K., & Handa, A. K. (1997). Chemistry and uses of pectin--a review. Crit Rev Food Sci Nutr, 37(1), 47-73. Vane, J., & Botting, R. (1987). Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J, 1(2), 89-96. Voets, I. K., de Keizer, A., & Cohen Stuart, M. A. (2009). Complex coacervate core micelles. Adv Colloid Interface Sci, 147-148, 300-318. Wan, Y., Xin, Y., Zhang, C., Wu, D., Ding, D., Tang, L., . . . Li, W. (2014). Fermentation supernatants of inhibit growth of human colon cancer cells and induce apoptosis through a caspase 3-dependent pathway. Oncol Lett, 7(5), 1738-1742. Wang, R., Zhang, M., & Mujumdar, A. S. (2010). Effect of food ingredient on microwave freeze drying of instant vegetable soup. Lwt-Food Science and Technology, 43(7), 1144-1150. West, N. P., Pyne, D. B., Cripps, A. W., Hopkins, W. G., Eskesen, D. C., Jairath, A., . . . Fricker, P. A. (2011). Lactobacillus fermentum (PCC(R)) supplementation and gastrointestinal and respiratory-tract illness symptoms: a randomised control trial in athletes. Nutr J, 10, 30. Wilt, T. J., Shaukat, A., Shamliyan, T., Taylor, B. C., MacDonald, R., Tacklind, J., . . . Levitt, M. (2010). Lactose intolerance and health. Evid Rep Technol Assess (Full Rep)(192), 1-410.
摘要: Yogurt, the most widely used food of lactic acid bacteria fermentation product in food industry and shows certain beneficial effects to human health. Complex coacervation , one way of microencapsulation technique could effectively exert protection effects for lactic acid bacteria in probiotic products. In this research, Pectin and Gelatin are used to coacervation , and cluster lactic acid bacteria(Pectin/Gelatin Complex Coacervation ; PGCC) as production of yogurt starter. In freeze resistance test, PGCC was subjected to slow freezing and rapid freezing to investigate the protection effects of PGCC against the detrimental conditions of freezing. The storage test of PGCC after freeze drying was subjected to stored at -40℃, 4℃ and 25℃ for 60 days, the objectives were to study the protection effects of PGCC to increase yogurt starter for storage viability after freeze drying. Results showed that survival of PGCC was better than the free cells in freezing and storage. In freeze resistance, survival of slow and rapid freezing was significantly increased(p<0.05). In 60 days storage, survival of PGCC was also significantly higher than free cells at -40℃, 4℃, 25℃(p<0.05). Through this study, we confirmed that the use of pectin and gelatin complex coacervation improving the freeze resistance of lactic acid bacteria. The yogurt starters after freeze dry could have better storage viability.
優格,為食品領域中應用最廣的乳酸菌醱酵品,並在促進人體健康方面,也具有明顯的效益。複合凝聚技術為微膠囊包覆方法之一,可以保護發酵產品中的乳酸菌。在此研究中,果膠與明膠將作為原料,與優格乳酸菌共同形成凝聚體(果膠與明膠的複合凝聚體;pectin and gelatin complex coacervation)來製作優格發酵劑。 抗凍性測試中,PGCC經過慢速和快速的冷凍,來測試PGCC在不同條件下冷凍方式的抗凍效果。PGCC在冷凍乾燥後的儲存測試,則在-40℃、4℃與25℃下存放60 天,目標為觀察PGCC提升優格發酵劑的儲存存活率。 結果顯示,PGCC在冷凍及儲存時的生存率,皆優於游離態對照組。在抗凍性方面,在慢速及快速冷凍條件下,PGCC顯著的提高了乳酸活菌的存活率(p<0.05)。在60天儲存測試中,PGCC在-40℃、4℃及25℃的條件下,儲存存活率也具有顯著(p<0.05)的提升。 透過本研究,證實利用果膠與明膠的凝聚方式,可以提升乳酸菌的抗凍性。經過冷凍乾燥製成的優格發酵劑,可以具有較佳的儲存存活率。
URI: http://hdl.handle.net/11455/90238
文章公開時間: 2018-07-30
Appears in Collections:食品暨應用生物科技學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.