Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90307
標題: Optimal parameters of artificial incubation for domestic water fowl eggs
水禽蛋孵化最適參數之建立
作者: Yi-Hsiu Chen
陳怡秀
關鍵字: 水禽
孵化率
涼蛋
溫度
代謝率
waterfowls
hatchability
cooling eggs
temperature
metabolic rate
引用: 白火城、吳兩新、林仁壽。2003。家畜內分泌學。藝軒圖書出版社。台北。 行政院農業委員會。1995。台灣農家要覽畜牧篇:鵝,第261-263頁。財團法人豐年社,台北。 行政院農業委員會。2010。九十九年農業統計年報。行政院農業委員會。 台北。 行政院農業委員會。2011。一百年農業統計年報。行政院農業委員會。台 北。 行政院農業委員會。2012。一百零一年農業統計年報。行政院農業委員會。 台北。 吳和光等。畜牧要覽家禽篇(增修版)。2001。中國畜牧學會編印。台北 市。 林宗毅。2004。產期調節與產業未來。種鵝產期調節研討會,pp. 5-1~5-7。中華民國養鵝協會。 馬春祥。1980。家禽學。國立編譯館。台北市。 許振忠、白火城、陳盈豪。1990。光照對母鵝產蛋性能之影響。Ⅱ.光照長度對母鵝產蛋性能之影響。農林學報 39: 27-36。 張勝善。1994。蛋之性狀與成分。蛋品加工學。第70-76頁。華香園出版 社,台北。 黃加成、胡怡浩、林路拾。1999。最近十年家禽事業之演變-養鴨事業。世界家禽學會中華民國分會10周年慶專刊。世界家禽學會中華民國分會季訊。 黃暉煌。1985。台灣的家禽事業及家禽品種。中國畜牧學會畜牧要覽家禽 篇。第1-28頁。華香園出版社,台北市。 鄭冠富。2003。密閉式環控種鵝舍之應用研究。碩士論文。國立中興大學生物產業機電工程學系。台中市。 Ackerman, R. A., G. C. Whittow, C. V. Paganelli, and T. N. Pettit. 1980. Oxygen consumption, gas exchange, and growth of embryonic wedge-tailed shearwaters (Puffinus pacificus chlororhynchus). Physiol. Biochem. Zool. 53 : 210-221. Ar, A. 1995. Principles of optimal artificial incubation for wild and recently domesticated bird species. Pages 6-13 in: Proceeding of 3th Conference of the European Association of Avian Veterinarians, Jerusalem, Israel. Ardia, D. R., J. H. Perez, and E. D. Clotfelter. 2010. Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling tree swallows. Proc. Biol. Sci. 277: 1881-1888. Azzam, M. A., K. Szdzuy, and J. P. Mortola. 2007. Hypoxic incubation blunts the development of thermogenesis in chicken embryos and hatchlings. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292: 2373-2379. Blood, J. R., S. J. V. Schalkwyk, S. W. P. Cloete, and Z. Brand. 1998. Embryonic deaths in relation to water loss of artificially incubated ostrich eggs. Pages 148-151 in: Proceeding of the 2nd International Ratite Congress. F. W. Huchzermeyer, ed. Oudtshoorm, South Africa. Booth, D. T., D. N. Jones. 2002. Underground nesting in megapodes. Pages 192–206 in: Avian Incubation: Behaviour, Environment and Evolution. D. C. Deemings, ed. University Press, Oxford. Butler, D. E. 1991. Egg handling and storage at the farm and hatchery. Pages 195–203 In: Avian Incubation. S. G. Tullet, ed. Butterworths, London, UK. Candlish, J. K. 1972. The role of the shell membranes in the functional integrity of the egg. In: Egg Formation and Production. B. M. Freeman, and P. E. Lake. Br. Poult. Sci. 53: 87-105. Decypere, E., E. J. Nouwen, E. R. Kuhn, H. Geers, and H. Michels. 1979. Do hormones in the serum of chick embryos and pos-hatching chickens as influenced by incubation temperature. Relationship with the hatching process and thermogenesis. Annual de Biologie Animal et Biochem. Biophysi. 19: 1713- 1723. Deeming, D. C. 1986. Effect of cuticle removal on the water vapour conductance of egg shells of several species of domestic bird. Br. Poult. Sci. 28: 231-237. Deeming, D. C. 1993. The incubation requirements of ostrich (struthio camelus) eggs and embryos. Pages 1-66 In: Ostrich Odyssey: Proceeding of the Meeting of the Australian Ostrich association Inc D. I. Bryden, ed. Sydney, University of Sydney. Deeming, D. C. 1995a. The Ratite egg. Pages 93-101 In: The Ratite Encyclopedia . Ratite Record Inc. Deeming, D. C. 1995b. The hatching sequence of Ostrich (Struthio camelus) embryos with notes on development as observed by candling. Br. Poult. Sci. 36: 67-78. Deeming, D. C. and L. Ayres. 1995. Factors affecting the growth rate of ostrich chicks in captivity. The Vet. Rec. 26: 617-622. Deeming, D. C., A. C. K. Dick, and L. L. Ayres. 1996. Ostrich Chick Rearing-A Stockman's Guide. Pages 7-14. Deeming, D. C. 1996. Large eggs: an incubation challenge. Poult. Inter. 35: 50-54. Deeming, D. C. 1997. Egg management: In Ratite egg incubation- A practical guide, pp.51-62. Oxford Print Centre, 36 Holywell Street, Oxford, United Kingdom. Edens, F. W. and H. S. Siegel. 1975. Adrenal responses in high and low ACTH response lines of chickens during acute heat stress. Gen. Comp. Endocrinol. 25: 64-73. Edens, F. W. 1978. Andrenal cortical insufficiency in young chickens exposed to a high ambient temperature on serum prolactin and luteinzing hormone levels during the reproductive life cycle of female turkey (meleagris gallopavo). Biol. Reprod. 30: 809-815. Etches, R. J. 1993. Reproduction in poultry. Reproduction in domesticated animals. G. J. King, ed. Elsevier, Huddersfields, UK. Everaert, N., L. De. Smit, M. Debonne, A. Witters, B. Kamers, E. Decuypere, and Bruggeman. Changes in acid-base balance and related physiological responses as a result of external hypercapnia during the second half of incubation in the chicken embryo. 2008. Poult. Sci. 87: 362-367. French, N. A. 1997. Modeling incubation temperature: The effects of incubator design, embryonic development, and egg size. Poult. Sci. 76: 124-133. Funk, M. E. and M. R. Irwin. 1955. Hatchery operation and management. John Willey & Sons Inc., New York. Funk, E. M. and H. V. Biellier. 1944. The minimum temperature for embryonic development in the domestic fowl (Gallus domesticus). Poult. Sci. 23: 538–540. Gillette, D. D. 1976. Laying patterns of geese in the mid west. Poult. Sci. 5: 1143-1146. Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov. 2001. Effects of size and temperature on metabolic rate. Poult. Sci. 293: 2248–2251. Gillooly, J. F., E. L. Charnov, G. B. West, V. M. Savage, and J. H. Brown. 2002. Effects of size and temperature on developmental time. Nature. 417: 70–73. Grow, O. 1972. Slipped or twisted wing. pp. 171. In: Modern Waterfowl Management and Breeding Guide. American Bantam Association, USA. Hamilton, R. M. G. 1982. Methods and factors that affect the measurement of egg shell quality. Poult. Sci. 61: 2022-2039. Harun, M. A. S., R. J. Veeneklaas, G. H. Visser, and M. V. Kampen. 2001. Artificial incubation of Muscovy duck eggs: why some eggs hatch and others do not. Poult. Sci. 80: 219-224. Kaplan, S., G. L. Kolesari, and J. P. Bair. 1978. Temperature dynamics for the fertile chicken egg. Am. J. Physiol. 234: 183–187. Kaufman, L. 1948. The effect of certain thermic factors on the morphogenesis of fowl embryos. Proc. 8th World's Poult. Congr. Copenhagen Demark. 1: 351-356. Keshavarz, K. 1985. Factors influencing shell quality. Poult. Digest. pp. 294-302. Lancaster, F. M. and D. R. Jones. 1988. Cooling of broiler hatching eggs during incubation. Br. Poult. Sci. 29: 597-604. Leach, R. M. and M. C. Nesheim. 1965. Nutritional, genetic and morphological studies of an abnormal cartilage formation in young chicks. J. Nutr. 86: 236-244. Lourens, A., H. V. D. Brand, M. J. W. Heetkamp, R. Meijerhof, and B. Kemp. 2007. Effects of eggshell temperature and oxygen concentration on embryo growth and metabolism during incubation. Poult. Sci. 86: 2194–2199. Lundy, H. 1969. A review of the effects of temperature, humidity, turning and gaseous environment in the incubator on the hatchability of hen's egg. Pages 143-176 in: The Fertility and Hatchability of the Hen's Egg. T. C. Carter and B. M. Freeman. ed. Oliver and Boyd, Ediburgh, Scotland, U. K. Lyon, B. E. and R. D. Montgomerie. 1985. Incubation feeding in snow buntings: female manipulation or indirect parental care? Behav. Ecol. Sociobiol. 17: 279–284. Lyon, B. E. and R. D. Montgomerie. 1987. Ecological correlates of incubation feeding: a comparative study of high arctic finches. Behav. Ecol. Sociobiol.68: 713–722. Martin, T. E. 1995. Avian life history evolution in relation to nest sites, nest predation, and food. Ecol. Monogr. 65: 101– 127. Martin, T. E. 2002. A new view of avian life-history evolution tested on an incubation paradox. Proc. R. Soc. B. Biol. Sci. 269: 309– 316. Nordstrom, J. O. and L. E. Usterhout. 1982. Estimation of shell weight and shell thickness from egg specific gravity and egg weight. Poult. Sci. 61: 1991-1995. Olav, J. H. and S. James. 1998. Effective artificial incubation of ostrich eggs. World's Poult. Sci. 7: 20-21. Olson, C. R., C. M. Vleck, and D. Vleck. 2006. Periodic cooling of bird eggs reduces embryonic growth efficiency. Physiol. Biochem. Zool. 79: 927-936. Rahn, H. and A. Ar. 1974. The avain egg: incubation time and water loss. Condor 76: 147-152. Rahn, H., C. V. Paganelli, and A. Ar. 1974. The avain egg: air-cell gas tension, metabolism and incubation time. Respir. Physiol. 22: 297-309. Richard, E. A. and C. N. Malden. 1990. Poultry Production, 13th edition, pp: 89-122. Romijn, C. and W. Lokhorst, 1961. Some aspects of energymetabolism in birds. Pages 49–58 in: Proceedings 2nd Symposium on Energy Metabolism. E. Brouwer and A. J. H. van Es, ed. EAAP, Wageningen, The Netherlands. Romanoff, A. L. 1972. Pathogenesis of the Avian Embryo (New York, Wiley Interscience). Romanoff, A. L. and A. J. Romanoff. 1949. The avian Egg. John Wiley and Sons Inc, New York. Romanoff, A.L. 1967. Biochemistry of the Avian Embryo. (New York, Wiley Interscience). Rosinski, A., R. Rouvier, G. Guy, D. Rousselot-Pailley, and H. Bielinska. 1996. Possibiities of increasing reproductive performance and meat production in geese. Page 735. Proc. World's Poult. Congr. New-Dehli, India. Stadelman, W. J. and O. J. Cotterill. 1994. Egg science and Technology. PP85-120. Sotherland, P. R. and H. Rahn. 1987. On the composition of bird eggs. Condor 89: 48–65. Tyler, C. 1961. Studies on egg shells. Xvi. Variations in shell thickness over different parts of the same shell. J. Sci. Food Agri. 12:459-470. Vleck, C. M. 1991. Allometric scaling in avian embryonic development. Pages in: Avian Incubation. Proceedings of the 22nd Poult,Sci.Symposium. Butterworth-Heinemann, S. G. Tullett, ed. Oxford. Vleck, C. M. and D. Vleck. 1987. Metabolism and energetics of avian embryos. J. Exp. Zool. Suppl. 1: 111-125. Voisey, P. W. and J. R. Hunt. 1974. Measurement of eggshell strength. J. Text. studies. 5: 135-182. Webb, D. R. 1987. Thermal tolerance of avian embryos: A review. Condor 89: 874–898. White, F. N. and J. L. Kinney. 1974. Avian incubation. Poult. Sci. 189:107–115. Williams, J. B. and R. E. Ricklefs. 1984. Egg temperature and embryo metabolism in some high-latitude procellariiform birds. Physiol. Biochem. Zool. 57: 118-127. Wilson, H. R. 1991. Interrelationships of egg size, chick size, posthatching growth and hatchability. World's Poult. Sci. J. 47: 5–20
摘要: 本研究進行了孵化溫溼度、涼蛋溫度及噴水對水禽蛋之影響,此外,亦進行二氧化碳濃度對孵化影響之測試,期能做為改善並提升水禽蛋孵化率之基礎研究,並提供飼養業者做實際應用參考。實驗結果顯示;於1-7天孵化溫度在38.5℃時,改鴨、菜鴨與白羅曼鵝蛋的孵化率會顯著地低於37.5以及38℃(P < 0.05)。而在鵝蛋孵化15-28天以每天90分鐘為涼蛋時間,結束時蛋殼表面溫度與設定溫度約有0.5-2℃差距,且約需30分鐘蛋表溫度能降溫至高於設定溫度2.5-3℃(29 -29.5℃)。而涼蛋時設定溫度對孵化率影響則以26.5℃顯著優於室溫(> 30℃)與28.5℃之涼蛋處理組(P < 0.05)。為了抵禦高溫及高產熱,涼蛋溫度較低的處理組其胚胎孵化時之corticosterone有下降趨勢,且代謝率亦會下降(P < 0.05),此顯示涼蛋會增加孵化中胚胎散熱作用與降低產熱與緊迫發生,而本實驗結果印證26.5℃涼蛋組其涼蛋期間胚胎代謝率與血液中corticosterone濃度遠低於與室溫涼蛋組(P < 0.05)。在孵化期各器官發育方面,除了心臟與蛋殼重在胚胎第15天(ED15)時具有差異性外,到出雛時各器官重就沒有顯著上差異。此顯示儘管在孵化期間因為溫度的不同而導致代謝率上的差異,胚胎本身存在著某種調控機制,會有互補性生長反應出現以保護重要的器官的發育。涼蛋期間噴水處理顯著降低鵝蛋蛋殼強度(P < 0.05),同時亦會提高孵化率(82% vs. 62%, P < 0.05),此顯示除以水份蒸發形式增加胚胎散熱外,噴水處理有脆化蛋殼強度以利雛鳥順利啄殼而出。於孵化8-14天適度提高二氧化碳濃度至0.05-1%對於水禽蛋孵化率確有正面的影響,其中以白羅曼鵝最為顯著(P < 0.05)。在孵化8-14天高相對溼度組別(75%)其胚失重都較低相對濕度組別(65%)少,而孵化8-14天高相對溼度對改鴨、菜鴨與鵝蛋孵化率有些微的提昇作用。綜合以上之實驗結果,當具有適當的孵化溫度及涼蛋溫度,加以噴水之實施,的確能提高孵化率。此外,若二氧化碳濃度與溼度控制得宜,亦能提高孵化率。
Eggs are essentially closed systems that receive no input of nutrients during development. There are many factors that affect the growth and metabolism of avian's embryo. For many species, periodic cooling during embryo development occurs when the incubating adult leaves the nest to forage, but the effects of periodic cooling on embryo growth, yolk use, and metabolism are poorly known. Avian embryos can tolerate periodic cooling, possibly by adjusting their physiology to variable thermal conditions. In the water fowl breeder farms, artificial incubation for a higher hatchability needs periodic cooling after ED14 to decrease embryo metabolism and increase heat dissipation. The cooling protocol also includes water-spraying treatment to facilitate pipping. Most of the works are due to a relative larger yolk and poor permeability for air and heat conductance of the eggshell of waterfowls when compared to chicken's. The study was to establish optimal parameters of artificial incubation for domestic water fowls including Kaiya and Tsaiya ducks, and White Roman goose. We investigated the effect of incubation temperature, cooling temperature, water showering and CO2 concentration on hatchability. In the first 7 days, eggs were incubated at 3 temperatures; 37.5、38 and 38.5℃ and maintained at 37.5℃ thereafter. Results showed that 37.5℃ incubation resulted in a better hatchability (P < 0.05). In the following 14 days, eggs were subjected to periodic cooling 90 minute per day to decrease heat production and increase hatchability. There are approximately 0.5-2℃ differences between the temperatures set up for cooling and the real temperature measured athe the eggshell surface. In contrast to ambient temperature (> 30℃) and 28.5℃, the setup 26.5℃ cooling temperature resulted in a better hatchability in consistence with lower plasma corticosterone levels and metabolic rate during incubation (P < 0.05), suggesting that periodic cooling decrease embryo metabolism and increase heat dissipation. Except heart and eggshell weight at ED15, cooling treatment exerted no effects on the weight of embryo organs. Interestingly, the heart weight bounced back to the control level at hatch, suggesting sparing and catch-up growth to ensure normal organ development and growth. Goose eggs receiving water spraying had a lower eggshell strength and a higher hatchability rate (82% vs. 62%), suggesting that water spraying increases heat dissipation with evaporation and promote embrittlement of the eggshell to facilitate chick pipping. Besides, in contrast to the control with air at 0.03% CO2 levels, infusion of CO2 to maintain CO2 concentrations between 0.5-0.7% in the incubator during ED8-14 improved hatchability of water fowl eggs, particularly goose eggs (P < 0.05). During ED8-14, incubation at 75% RH (relative humidity) had a less egg weight loss and marginal effect on hatchability when compared to eggs incubated at 65% RH. In summary, 37.5℃ incubation during the first 7 days, and periodic cooling to 26.5℃ with water sparing and 0.5-0.7% CO2 concentrations in the following 14 days resulted in better hatchability of water fowl eggs.
URI: http://hdl.handle.net/11455/90307
文章公開時間: 10000-01-01
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.