Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90312
標題: Evaluation of the quality and germicidal action of fresh pork chop treated by spraying coated with Chinese mahogany (Toona sinensis) extracts during storage at 10±2℃
生鮮豬肉排以香椿萃取液噴塗處理後於 10±2℃儲藏期間之品質及抑菌效果評估
作者: Zih-Huan Lin
林子桓
關鍵字: 
no
引用: 行政院農委會。2006。CAS 優良食品標誌肉品類檢驗項目、方法與標準。 吳淑靜與柯文慶。1997。食品添加物。台中,台灣。 李秀與賴滋漢。1976。食品分析與檢驗。精華出版社。 邱志威與吳定峰。2003。食品微生物精要。藝軒圖書出版社。台北,台灣。 柯勇。2003。現代微生物學。藝軒圖書出版社。台北,台灣。 許宗賢。2005。不同辛香料抗氧化性質與對法蘭克福香腸品質之研究。國立嘉義大學碩士論文。 陳自珍與沈介仁。2000。食品添加物。台北,台灣。 陳明造,賴滋漢及許哲彰。2000。添加葡萄糖酸內酯與不同米飯類對肉酉圭品質特性和生物胺含量之影響。中國畜牧學會會誌 第 29 卷 第 3 期 255-264. 黃宴容。2006。甜馬郁蘭生育特性、精油形成及其香味屬性之探討。國立屏東科技大學畜產系碩士論文。 黃鈺婷。2008。添加香椿之土司品質評估及抗氧化活性分析。國立中興大學食品暨應用生物科技學系所碩士論文。台中,台灣。 楊璧瑜。2011。紅麴米或香椿之添加對台式爌肉脂肪氧化抑制效果之評估。國立中興大學動物科學系碩士論文。 羅曼莉。2012。香椿及魚腥草萃取液之抗菌特性的評估及其在台式香腸之應用。中興大學動物科學系碩士論文。 劉雨田 、汪蕙蘭、岱達德、周啟馥、林文博、林憲德與陳春香。 2008。新編微生物學。永大書局有限公司。台北,台灣。 衛生福利部食品藥物管理署。2013。食品添加物使用範圍及限量暨規格標準。 鄭光宏。2007。不同萃取方式之香椿萃取液抗氧化性質與其對中式半乾式香腸品質影響之研究。國立嘉義大學動物科學系研究所碩士論文。 Adje, F., Y. F. Lozano, P. Lozano, A. Adima, F. Chemat and E. M. Gaydou. 2010. Optimization of anthocyanin, flavonol and phenolic acid extractions from Delonix regia tree flower using ultrasound-assisted water extraction. Industrial Crops and Products 32: 439 - 444. Ahmad, A., A. Khan, F. Akhtar, S. Yousuf, I. Xess, L. A. Khan and N. Manzoor. 2011. Fungicdal activity of thymol and cravacrol by disrupting ergosterol biosynthesis and membrance integrity against Candida. European Journal of Clinical Microbiology and Infectious Diseases 30: 41 - 50. Alexandre, E. M. C., T. R. S. Brandão and C. L. M. Silva. 2012. Assessment of the impact of hydrogen peroxide solutions on microbial loads and quality factors of red bell peppers, strawberries and watercress. International Journal of Food Microbiology 166: 263-269. Allan, K., F. J. Kelly and G. Devereux. 2009. Antioxidants and allergic disease: a case of too little or too much? Clinical and Experimental Allergy 40: 370 - 380. Alves-Silva, J. M., S. M. D. Santos, M. E. Pintado, J. A. Pérez-Álvarez, J. Fernández- López and M. Viuda-Martos. 2013. Chemical composition and in vitro antimicrobial, antifungal and antioxidant properties of essential oils obtained from some herbs widely used in Portugal. Food Control 32: 371-378. Andersen, A. 2006. Final report on the safety assessment of benzaldehyde. International Journal of Toxicology 25: 11 - 27. Barrosa, L., C. T. Alvesc, M. Duenas, S. Silva, R. Oliveira, A. M. Carvalho, M. Henriquesc, C. Santos-Buelgab and I. C. F. R. Ferreira. 2013a. Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Industrial Crops and Products 41: 41-45. Barrosa, L., C. T. Alves, M. Duenas, S. Silva, R. Oliveira, A. M. Carvalho, M. Henriquesc, C. Santos-Buelgab and I. C. F. R. Ferreira. 2013b. Characterization of phenolic compounds in wild medicinal flowers from Portugal by HPLC–DAD–ESI/MS and evaluation of antifungal properties. Industrial Crops and Products 44: 104-110. Bensalema S., J. Soubhyec, I. Aldib, L. Bournine, A. T. Nguyen, M. Vanhaeverbeek, A. Rousseau, K. Z. Boudjeltia, A. Sarakbi, J. M. Kauffmann, J. Nève, M. Prévost, C. Stévigny, F. Maiza-Benabdesselam, F. Bedjou, P. V. Antwerpen and P. Duez. 2014. Inhibition of myeloperoxidase activity by the alkaloids of Peganum harmala L. (Zygophyllaceae). Journal of Ethnopharmacol 154: 361-9. Chang, C. C., M. H. Tang, H. M. Wen and J. C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 10: 178-182. Chen L., G. Bai, R. Yang, J. Zang, T. Zhou and G. Zhao. 2014. Encapsulation of β- carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chemistry 149: 307-312. Cheng, K. W., R. Y. Yang, S. C.S. Tsou, C. S. C. LO, C. T. Ho, T. C. Lee and M. Wang. 2009. Analysis of antioxidant activity and antioxidant constituents of Chinese toon. Journal of Functional Food 1: 253 - 259. Choe, J. H., A. Jang, E. S. Lee, J. H. Choi, D. J. Han, H. Y. Kim, M. A. Lee, S. Y. Shim and C. J. Kim. 2011. Oxidantive and color stability of coocked ground pork containing louts leaf (Nelumbo nucigera) and barley leaf (Hordeum vulgare) powder during refrigerated storage. Meat science 87: 12-18. Clemente L., I. Correia, P. Themudo, I. Neto, M. Cancai and F. Bernardo. 2014. Antimicrobial susceptibility of Salmonella enterica isolates from healthy breeder and broiler flocks in Portugal. The Veterinary Journal 200: 276-281. Cowan, M. M. 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews: 564 - 582. Daglia, M. 2012. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology 23: 174-181. Dahle, L. K., E. G. Hill and R. T. Holman. 1962. The thiobarbituric acid reaction and the autooxidation of polyunsaturated fatty acid methyl esters. Archives of Biochemistry and Biophysics 98: 253-261. Davidson, P. M. and T. M. Taylor. 2007. Chemical preservatives and natural antimicrobial compounds. In M. P. Doyle and L. R. Beuchat (eds.), Food microbiology: Fundamentals and frontiers (3rd ed.). Washington, DC. Devatkal, S. K. and B. M. Naveen. 2010. Effect of salt, kinnow and pomegranate fruit by-product powders on color and oxidative stability of raw ground goat meat during refrigerated storage. Meat Science 85: 306-311. Duke, J. A. 1985. Handbook of medicinal herbs. CRC press, Inc., Boca Raton, Fla. El-Alim, S. S. L. A., A. Lugas, J. Hovari and E. Dworschak. 1999. Culinary herbs inhibit lipid oxidation in raw and cooked minced meat patties during storage. Journal of Science of Food and Agriculture 79: 277-285. Elgayyar, M., F. A. Draughon, D. A. Golden and J. R. Mount. 2001. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganism. Journal of Food Protection 64: 1019-1024. Eloff, J. N. 1998. Which extractant should be used for the screening and isolation of antimicrobial components from plants? Journal of Ethnopharmacology 60: 1 - 8. Farouk L., A. Laroubi, R. Aboufatima, A. Benharref and A. Chait. 2008. Evaluation of the analgesic effect of alkaloid extract of Peganum harmala L.: possible mechanisms involved. Journal of Ethnopharmacology 115: 449-454. Faustman, C., S. M. Specht, L. A. Malkus and D. M. Kinsman. 1992. Pigment oxidation in ground veal: Influence of lipid oxidantion, iron and xinc. Meat Science 31: 351-362. Geissman, T. A. 1963. Flavonoid compounds, tannins, lignins and related compounds, p. 265. In M. Florkin and E. H. stotz (ed.), Pyrrole pigments, isoprenoid compounds and phenolic plant constituents, vol. 9. Elsevier, New York. Gill, C. O. 1976. Substrate limitation of bacterial growth at meat surfaces. The Journal of Applied Bacteriology 41: 401-410. Gill, C. O. 1982. Microbial interaction with meats. Meat Microchology Applied Science Publishers Ltd. Girolami, A., F. Napolitano, D. Faraone and A. Braghieri. 2013. Measurement of meat color using a computer vision system. Meat Science 93: 111-118. Guibourdenche, M., P. Roggentin, M. Mikoleit, P. I. Fields,J Bockemu, P. A. D. Grimont and F. X. Weill. 2010. Supplement 2003-2007 (No. 47) to the White-Kauffmann-Le Minor scheme. Res. Microbiol. 161, 26–29. Gutiérrez-Larraínzar, M., J. Rúa, I. Caro, C. D. Castro, D. D. Arriaga, M. R. García- Armesto and P. D. Valle. 2012. Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control 26: 555-563. Guy, R. A., D. Tremblay, L. Beausolei, J. Harel and M. Champagne. 2014. Quantification of E. coli O157 and STEC in feces of farm animals using direct multiplex real time PCR (qPCR) and a modified most probable number assay comprised of immunomagnetic bead separation and qPCR detection. Journal of Microbiological Methods 99: 44-53. Harris, R. S. 1963. Vitamins K, p. 192 - 198. In M. Florkin and E. Stotz (ed.), Pyrrole pigments, isoprenoid compounds and phenolic plant constituents, vol. 9. Elsevier, New York. Helander, I. K., H. L. Alakomi, K. Latva-Kala, T. Mattila-Sandholm, I. Pol and E. J. Smid. 1998. Characterization of the action of selected essential oil compounds on gram negative bacteria. Journal of Agricultural and Food Chemistry 46: 3590 - 3595. Jacob, R. H. and K. L. Thomson. 2012. The importance of chill rate when characterising colour change of lamb meat during retail display. Meat Science 90: 478-484. Karre, L., K. Lopez and K. J. K. Getty. 2013. Natural antioxidants in meat and poultry products. Meat Science 94: 220-227. Kim, D. O. and C. Y. Lee. 2004. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free redical and its structural relationship. Critival Reviews in Food Science and Nutrition 44:253 - 273. Knowles, R. J., S. Roller, D. B. Murray and A. S. Naidu. 2005. Antimicrobial action of carvacrol at different stages of dual-species biofilm development by staphylococcus aureus and Salmonella enterica serovar Typhimurium. Applied and Environmental Microbiology 71: 797 - 803. Kos J., E. J. Hajnala, M. Škrinjar, A. Mišan, A. Mandić, P. Jovanov, I. Milovanović. 2014. Presence of Fusarium toxins in maize from Autonomous Province of Vojvodina, Serbia. Food Control 46: 98-101. Li, Y., R. Afrasiabi, F. Fathi, N.Wang, C. Xiang, R. Love, Z. She and H. Kraatz. 2014. Impedance based detection of pathogenic E. coli O157:H7using a ferrocene-antimicrobial peptide modified biosensor. Biosensors and Bioelectronics 58: 193-199. Lijun, W. and L. W. Curtis. 2006. Recent advance in extraction of nutraceurical from plants. Trends Food Science Technology 17: 300 - 312. Lin, Q. X., M. Li, R. M. Zhou and Y. Liu. 2012. Chemical composition and anti-bacteria activity of essential oil from Cedrela sinensis (A. Juss.) Roem. seed. African Journal of Biotechnology 11: 1789-1795. Liu, D. C., R. T. Tsau, Y. C. Lin, S. S. Jan and F. J Tan. 2009. Effect of various levels of rosemary or chinese mahogany on the quality of fresh chicken sausage during refigerated storage. Food Chemistry 117: 106 - 113. Liza, M. S., R. Abdul Rahmana, B. Mandana, S. Jinap, A. Rahmat, I. S. M. Zaidul and A. Hamid. 2010. Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus. Food and Bioproducts Processing 88: 319- 326. Lopez-Malo Vigil, A., E. Palou and S. M. Alzamora. 2005. Naturally occurring compounds. Plant sources. In P. M. Davidson, J. N. Sofos and A. L. Branen (Eds.), Antimicrobials in food (3rd ed.) pp. 429-452. Boca Raton, Florda: CRC Press, Taylor and Francis Group. Lozano-Ojalvo D., A. Rodríguez, V, Bernáldez, J. J. Córdoba, M. Rodríguez. 2013. Influence of temperature and substrate conditions on the omt-1 gene expression of Aspergillus parasiticus in relation to its aflatoxin production. International Journal of Food Microbiology 166: 263-269. Lua, D. R., Y. C. Tana, S. Kongpachith, X. Cai, E. A. Stein, T. M. Lindstrom, J. Sokolove and W. H. Robinson. 2014. Identifying functional anti-Staphylococcus aureus antibodies by sequencing antibody repertoires of patient plasmablasts. Clinical Immunology 152: 77-89. Luciano, G., L. Biondi, R. I. Pagano, M. Scerra, V. Vasta, P. López-Andrés, B. Valenti, M. Lanza, A. Priolo and M. Avondo. 2012. The restriction of grazing duration does not compromise lamb meat colour and oxidative stability. Meat Science 92: 30-35. Maier, E., K. kurz, M. jenny, H. schennach, F. Ueberall and D. Fuchs. 2010. Food preservative sodium benzoate and propionic acid and colorant curcumin suppres Th1-type immune response in vitro. Food and Chemical Toxicology 48: 1950 - 1956. Marteaua C., D. Favier, V. Nardello-Rataj, J. M. Aubry. 2014. Dramatic solvent effect on the synergy between α-tocopherol and BHT antioxidants. Food Chemistry 160: 190- 195. Mascio, P. D., M. E. Murphy and H. Sies. 1991. Antioxidant defense systems: the role of carotenoids, tocopherols and thiols. American of Journal Clinical Nutrition 53: 194 - 200. Masuku, S. M., D. Babu, E. M. Martin, C. A. O'Bryan, P. G. Crandall and S. C. Ricke. 2014. Lethality of moist heat and silver dihydrogen citrate sanitizer combinations on Listeria spp. adhered to components of a deli meat slicer. Food Control 44: 227-232. Mauro A., P. Battilan, K. A. Callicott, P. Giorni, A. Pietri, P. J. Cotty. 2013. Structure of an Aspergillus flavus population from maize kernels in northern Italy. International Journal of Food Microbiology 162: 1-7. Meson, T. L., B. P. Wasserman. 1987. Inavtiveation of red beet beta-glucan synthase by native and oxidazed phenolic compounds. Phytochemistry 26: 2197 - 2202. Modey, W. K., D. A. Mulholland and M. W. Raynor. 1996. Analytical supercritical fluid extraction of natural products. Phytochem Analysis : 7-1. Mourtzinos, I., S. Konteles, N. Kalogeropoulos and V. T. Karathanos. 2009. Thermal oxidation of vanillin affects its antioxidant and antimicrobial properties. Food Chemistry 114: 791 - 797. Murr, C., k. Schroecksnadel, C. winkler, M. ledochowski and D. Fuchs. 2005. Antioxidants may increase the probability of developing allergic disease and asthma. Medical Hypotheses 64: 973 - 977. Nair, b. 2001. Final report on the safety assessment of benzyl alcohol, benzoic acid, and sodium benzoate. International Journal of Toxicology 20: 23 - 50. Ockerman, H. W. 1981. Quality Control of Post-mortem Muscle Tissue. Meat and Additives Analysis. 12th. Ohio State University. OH U.S.A. Ockerman, H. W. and J. C. Kuo. 1982. Dried pork as infuenced by nitrate, packaging method and storage. Journal of Food Science 47: 1637-1634. Ölmez, H., U. Kretzschmar. 2009. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT- Food Science and Technology 42: 686-693. Park, J. C., Y. Y. Yu, J. H. Lee. J. S. Chol and K. D. Ok. 1996. Phenolic compounds from the rachis of Cedrela sinensis. Korea Journal of Pharmacogn 27: 219 - 223. Pleadin J., N. Vahčić, N. Perši, D. Ševelj, K. Markov, J. Frece. 2013. Fusarium mycotoxins occurrence in cereals harvested from Croatian fields. Food Control 32: 49-54. Prettia L., G. Bazzub, P. A. Serrab and G. Niedduc. A novel method for the determination of ascorbic acid and antioxidant capacity in Opuntia ficus indica using in vivo microdialysis. Food Chemistry 147: 131-137. Pyne M. E., M. Bruder, M. Moo-Younga, D. A. Chunga and C. P. Chou. 2014. Technical guide for genetic advancement of underdeveloped and intractable Clostridium. Biotechnology Advances 32: 623-641. Qi, S. and D. Zhou. 2013. Lotus seed epicarp extract as potential antioxidant and anti- obesity additive in Chinese Cantonese Sausage. Meat Science 93: 257-262. Ramirez, R. and R. Cava. 2007. The crossbreeding of different Duroc lines with the Iberian pig affects colour and oxidative stability of meat during storage. Meat Science 77: 339-347. Rao, A., Y. Q. Zhang, S. Muend and R. Rao. 2010. Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrobial Agents and Chemother 54: 5062 - 5069. Rodriguez-Rivera L.D., E.M. Wright, J.D. Siler, M. Elton, K.J. Cummings, L.D. Warnick and M. Wiedmann. 2014. Subtype analysis of Salmonella isolated from subclinically infected dairy cattle and dairy farm environments reveals the presence of both human- and bovine-associated subtypes. Veterinary Microbiology 170: 307-316. Romagnani, S. 2004. Immunologic influences on allgergy and the Th1/Th2 balance. Journal of Allergy and Clinical Immunology 113: 395 - 400. Scallan E, R. M. Hoekstra, F. J. Angulo, R.V. Tauxe, M. A. Widdowson, S. L. Roy et al. 2011. Foodborne illness acquired in the United States-major pathogens. Emerging Infectious Diseases 17: 7-15. Sherwin, E. R. 1978. Oxidation antioxidants in fat and oil processing. Journal of the American Oil Chemists' Society 55: 809-814. Shone C. C and P. Hambleton. Toxigenic clostridia. In: Minton NP, Clarke DJ, editors. Clostridia. New York: Plenum Press; 1989. p. 265-292. Staszewskia, M. and R. J. Jagus. 2008. Natural antimicrobials: Effect of MicrogardTM and nisin against Listeria innocua in liquid cheese whey. International Dairy Journal 18:255-259. Stern, J. L., A. E. Hagernman, P. D. Steinberg and P. K. Mason. 1996. Phlorotannin-protein interactions. Journal of Chemical Ecology 22: 1887 - 1899. Strachan, D. P. 1989. Hay fener, hygiene and household size. British Medical Journal 299:1259 - 1260. Stratford, M., A. Plumridge, G. Nebe-Von-Caron and D. B. Archer. 2009. Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory. International Journal of Food Microbiology 136: 37 - 43. Thomson, W. A. R. (ed.). 1978. Medicines from the earth. McGraw-Hill book Co., Maidenhead, United kingdom. Tuchiya, H., M. Sato, T. Miyazaki, S. Fujiwara, S. Tanigaki, M Ohyama, T. TanaKa and M. Iinuma. 1996. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology 50: 27 - 34. Vallverdi-Queralt, A., J. Regueiro, M. Martinez-Huelamo, J. F. R. Alvarenga, L. N. Leal and R. M. Lamuela-Raventos. 2014. Acomprehensive study on the phenolic profile of widely used culinary herbs and spices: rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chemistry 154: 299 - 307. Wang, K. J., C. R. Yang and Y. J. Zhang. 2007. Phenolic antioxidants from Chinese toon (fresh young leaves and shoots of Toona sinensis). Food Chemistry 101: 365 - 371. Wu, J. G.,W. Peng, J. Yi, Y.B. Wu, T. Q. Chen, K. H. Wong and J. Z. Wu. 2014. Chemical composition, antimicrobial activity against Staphylococcus aureus and apro- apoptotic effect in SGC-7901 of the essential oil from Toona sinensis (A.Juss.) Roem. leaves. Journal of Ethnopharmacology 154: 198-205. Xi D., C. Liu and Y. C. Sua. 2012. Effects of green tea extract on reducing Vibrio parahaemolyticus and increasing shelf life of oyster meats. Food Control 25: 368-373. Xu, J., F. Zhou, B. P. Ji, R. S. Pei and N. Xu. 2008. The antibacterial mechanism of cavacrol and thymol against Escherichia coli. Letter Applied Microbiology 47: 174- 179. Zabka, M., R. Pavela. 2013. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere 93: 1051-1056. Zeaki N., R. Cao, P. N. Skandamis, P. Rådström and J. Schelina. 2014. Assessment of high and low enterotoxin A producing Staphylococcus aureus strains on pork sausage. International Journal of Food Microbiology 183: 44-50. Zhang, Y., K. Lewis. 1997. Fabatin: new antimicrobial plant peptides. FEMS Microbiology Letters 149: 59 - 64. Zhou, G. H., X. L. Xu and Y. Liu. 2010. Preservation technologies for fresh meat. Meat Science 86: 119-128.
摘要: 食源性腐敗微生物將導致食品之腐敗,並造成食物中毒等問題。為避免上述情形,食品業者常使用化學添加物以抑制食品中微生物之生長,但此類化學添加物之使用會增加致癌風險。據文獻指出酚類化合物具有良好之抗菌能力,能延緩食品中微 生 物 之生長。 因此本研究 於第一部分選用香椿 (Toona sinensis) 及 魚 腥 草(Houttuynia cordata) 萃取物,測試兩者混合使用之抑制效果,並探討香椿萃取物對於金黃色葡萄球菌 (Staphylococcus aureus)、大腸桿菌 (E. coli) 、鼠傷寒沙門氏菌(Salmonella typhimurium) 、綠膿桿菌 (Pseudomonas aeroginosa)、產氣莢膜桿菌(Clostridium perfringens)、白色念珠菌 (Candida albicans)、黑麴黴 (Aspergillus flacvus) 及芽枝黴菌 (Cladosporium herbarum) 之最小抑制濃度。第二部分將香椿萃取物製成噴劑,噴塗於豬里肌肉排再經保鮮膜包裝後進行10℃儲存試驗,儲存期間分別於0、3、5、7、10及14天取樣測定總生菌、厭氧菌、VBN值、TBA值、pH值、色澤及感官品評之變化。結果顯示:香椿萃取液對於 E. coli、P. aeroginosa、S. typhimurium、S. aureus、C. perfringens 及 C. albicans 之最小抑制濃度分別為 15.625 15.625 7.8125 7.8125、、、、15.625 及 7.8125 μg/mL,但對 A. niger 與 C. herbarum 則無抑制效果。生豬肉排於10℃儲存試驗,可發現各組之 pH 值於儲存期間皆有隨儲存時間而上升之趨勢,而儲存第 10 天後對照組與正向對照組之 pH 值顯著高於各香椿溶液處理組。各組之VBN 值亦皆隨儲存時間增加而顯著上升。對照組與正向對照組於儲存至第 10 天之 VBN 值分別為 27.04 與 25.90 mg %,表示肉中蛋白質大量受微生物分解。而噴塗 250 及 500 μg/mL 香椿溶液處理組於儲存第 14 天之 VBN 值分別為 23.26 與23.95 mg %。另外,對照組之 TBA 值會隨儲存時間而快速上升,至儲存第 5 天可達最高值 而噴塗香椿溶液則能使生豬肉排之 TBA 值維持穩定 微生物品質方面。各組之總生菌數皆隨儲存時間增加而顯著上升。對照組與正向對照組之總生菌數於儲存第 10 天之總生菌數分別為 7.71 與 7.10 log CFU/g,已超過 CAS 之標準。而噴塗香椿溶液之處理組儲存至第 14 天之總生菌數才分別高至 7.77、7.63 及 7.10。各組之厭氧菌數皆隨儲存時間增加而上升。對照組與正向對照組自儲存第 10 天起之厭氧菌數顯著高於所有噴塗香椿溶液之處理組。色澤分析之結果顯示各組 L 值皆隨儲存天數增加而顯著上升,但各組間無顯著差異。a*值方面,對照組與正向對照組之 a*值會隨儲存時間增加而顯著下降,但香椿溶液處理組則於整個儲存期間皆維持穩定。而各組之 b*值於儲存期間則變化不大。生豬肉排之感官品評方面,對照組與正向對照組於儲存至第 5 天之色澤及風味即不為品評人員所接受,而噴塗 250 與 500 μg/mL 香椿溶液處理組則可儲存至第 7 天, 而總接受度方面,對照組與正向對照組則只能儲存 3 天但噴塗 250 與 500 μg/mL 香椿溶液處理組則可延長至第 7 天。生豬排經儲存後煮熟之感官品評,於風味品評上,對照組與正向對照組可儲存至第 5 天但噴塗 250 與 500 μg/mL 香椿溶液處理組則可延至第 7 天依舊可為品評人員所接受。而各組生豬排經儲存後煮熟之肉排其質地與多汁性均會隨儲存時間而下降,但各組至第 7 天皆可為品評人員所接受且組間無顯著差異。總 接受度則可發現生豬排經儲存後煮熟於對照組、正向對照組及 125μg/mL 香椿溶液處理組只能至第 5 天但噴塗 250 與 500 μg/mL 香椿溶液處理組則可延至第 7 天。由以上結果可知以微生物品質觀點而言生豬排以香椿溶液噴塗處理後於 10℃儲存條件下可有效從 5 天延長至 10 天,但若以官能品評觀點而言則可發現以香椿溶液噴塗處理之生豬排則只能有效延長至 7 天。
The microorganisms can lead the decay of the foods and also can cause food poisoning. Since the microbial growth is undesirable, the food industry usually utilize chemical additives in the processing to slow or inhibit their growth. However it has been shown that use of chemical additives can increase the risk of carcinogenesis. According of many reports, the phenolic compounds have excellent antimicrobial activity and can retard the microbial proliferation in food. Therefore, the purpose of the first part in this research was to detect the minimum inhibitory concentration (MIC) of Toona sinensis extract against Staphylococcus aureus, E. coli, Salmonella typhimurium, Pseudomonas aeroginosa, Clostridium perfringens, Candida albicans, Aspergillus flacvu and Cladosporium herbarum. The secondary part, the antimicrobial activity of different concentrations of T. sinensis solutions (0, 125, 250 and 500 μg/ml), positive control (70% alcohol) will be evaluated with the microbial and the quality profiles of pork loin chops which treated by spray coated with T. sinensis solutions during storage at 10℃ for 14 days. The results of the first part in this study, the minimum inhibition concentration (MIC) of T. sinensis extract only for E. coli, P. aeroginosa, S. typhimurium, S. aureus, C. perfringens and C. albicans were 15.625, 15.625, 7.8125, 7.8125, 15.625 and 7.8125 μg/mL, individually. The mixture of T. sinensis and H. cordata or only T. sinensis shown no microbial inhibitory effect against A. niger and C. herbarum. The results of the secondary part in this study, the pH value of all lots increased with storage time; control and positive control were significantly higher than all T. sinensis solution treatments after 10 days of storage. The VBN value of control and positive control increased rapidly with storage time and the value were 27.04and 25.90 mg% at the 10th day during storage. However, the VBN of fresh pork chop spray coated with 250 and 500 μg/mL T. sinensis solution were kept stable and lower value during storage time. The results of TBA value were showed as the same as VBN in this study but that of the control was increased rapidly to 6.36 mg MDA/kg before 5days during storage then decreased down. The profiles of microbial, the total plate count of control and positive control increased siginficantly during storage time, and reached 107 CFU/g at the 7th days of storage. The same number of plate count of fresh pork chop spray coated with different T. sinensis solutions were prolonged to the end of storage (14 days). The results of anerobic count shown as the same as total plate count in this study but all treatments with T. sinensis solution kept lower count (106 CFU/g) until the end of storage. The L* value of all lots significantly increased with storage time but had no significant difference among treatments. The a* value of fresh pork chop spray coated with different T. sinensis solutions maintained stable during storage but control and positive control were significantly decreased with storage time. Moreover, the b* value of all lots were stable during storage. The profiles of sensory panel in all lots of fresh pork chops were decreased significantly with storage time but no significant differences were found at day 0. Based on color score, the fresh pork chops in control and positive control were unacceptable at the 7th day but pork chops treated by 250 and 500 μg/mL T. sinensis solution were still acceptable by people. Furthermore, based on odor and overall acceptance, fresh pork chops of control and positive control can not be acceptable after 3 days of storage and the acceptable time of fresh pork chops treated by 250 and 500 μg/mL T. sinensis solution were prolonged to 7 days of storage. The profiles of sensory panel in all lots of pork chops after cooking were as the same as that in fresh pork chops, based on flavor and overall acceptance. However, the juiciness and texture of all lots of pork chops after cooking were kept acceptance by the sensory panelists until at the 7th day of storage. Altogether, according to analyses of the above microbiological data, the shelf life of fresh pork chops treated by 125, 250 and 500 μg/mL T. sinensis solution can be prolonged to 10 days when compared to 5 days of storage for control or positive control at 10℃. On the other hand, based on the profiles of sensory panel in cooked pork chops, the shelf life of fresh pork chops treated by 125, 250 and 500 μg/mL T. sinensis solution should be shorted to 7days of storage at 10℃.
URI: http://hdl.handle.net/11455/90312
文章公開時間: 10000-01-01
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.