Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorSheng-Kai Linen_US
dc.identifier.citation[1] United States. Department of Health. (1996). Physical activity and health: a report of the Surgeon General. DIANE Publishing. [2] Williams, C. L., Hayman, L. L., Daniels, S. R., Robinson, T. N., Steinberger, J., Paridon, S., & Bazzarre, T. (2002). Cardiovascular Health in Childhood A Statement for Health Professionals From the Committee on Atherosclerosis, Hypertension, and Obesity in the Young (AHOY) of the Council on Cardiovascular Disease in the Young, American Heart Association. Circulation,106(1), 143-160. [3] World Health Organization (2004). Global Strategy on Diet, Physical Activity and Health. WHA57.17. WHO, Geneva. [4] Booth, F. W., Gordon, S. E., Carlson, C. J., & Hamilton, M. T. (2000). Waging war on modern chronic diseases: primary prevention through exercise biology.Journal of Applied Physiology, 88(2), 774-787. [5] Hatano, Y. (1993). Use of the pedometer for promoting daily walking exercise.International Council for Health, Physical Education, and Recreation, 29(4), 4-8. [6] Caspersen, C. J., & Fulton, J. E. (2008). Epidemiology of walking and type 2 diabetes. Medicine and science in sports and exercise, 40(7 Suppl), S519-28. [7] Araiza, P., Hewes, H., Gashetewa, C., Vella, C. A., & Burge, M. R. (2006). Efficacy of a pedometer-based physical activity program on parameters of diabetes control in type 2 diabetes mellitus. Metabolism, 55(10), 1382-1387. [8] Tudor- Locke C, Pangrazi, R. P., Corbin, C. B., Rutherford, W.J., Vincent, S. D, Raustorp, A., et al. (2004). BMI- referenced Standard for recommend pedometer- determined steps/ day in children. Preventive Medicine, 38 (6) , 857- 864. [9] Richardson, C. R., Newton, T. L., Abraham, J. J., Sen, A., Jimbo, M., & Swartz, A. M. (2008). A meta-analysis of pedometer-based walking interventions and weight loss. The Annals of Family Medicine, 6(1), 69-77. [10] Bouten, C. V., Sauren, A. A., Verduin, M., & Janssen, J. D. (1997). Effects of placement and orientation of body-fixed accelerometers on the assessment of energy expenditure during walking. Medical and Biological Engineering and Computing, 35(1), 50-56. [11] Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm.Biomedical Engineering, IEEE Transactions on, (3), 230-236. [12] Ying, H., Silex, C., Schnitzer, A., Leonhardt, S., & Schiek, M. (2007, January). Automatic step detection in the accelerometer signal. In 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007)(pp. 80-85). Springer Berlin Heidelberg. [13] Marschollek, M., Goevercin, M., Wolf, K. H., Song, B., Gietzelt, M., Haux, R., & Steinhagen-Thiessen, E. (2008, August). A performance comparison of accelerometry-based step detection algorithms on a large, non-laboratory sample of healthy and mobility-impaired persons. In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE (pp. 1319-1322). IEEE. [14] Zhao, N. (2010). Full-featured pedometer design realized with 3-Axis digital accelerometer. Analog Dialogue, 44(06). [15] Schofield, G., Schofield, L., Hinckson, E. A., & Mummery, W. K. (2009). Daily step counts and selected coronary heart disease risk factors in adolescent girls. Journal of Science and Medicine in Sport, 12(1), 148-155. [16] Sugiura, H., Sugiura, H., Kajima, K., Mirbod, S. M., Iwata, H., & Matsuoka, T. (2002). Effects of long-term moderate exercise and increase in number of daily steps on serum lipids in women: randomised controlled trial [ISRCTN21921919].BMC Women's Health, 2(1), 3. [17] Tudor-Locke, C. E., & Myers, A. M. (2001). Challenges and opportunities for measuring physical activity in sedentary adults. Sports Medicine, 31(2), 91-100. [18] Talbot, L. A., Gaines, J. M., Huynh, T. N., & Metter, E. J. (2003). A Home‐Based Pedometer‐Driven Walking Program to Increase Physical Activity in Older Adults with Osteoarthritis of the Knee: A Preliminary Study. Journal of the American Geriatrics Society, 51(3), 387-392. [19] Holbrook, E., Barreira, T., & Kang, M. (2009). Validity and reliability of Omron pedometers for prescribed and self-paced walking. Medicine+ Science in Sports+ Exercise, 41(3), 670. [20] Beets, M. W., Patton, M. M., & Edwards, S. T. A. C. E. Y. (2005). The accuracy of pedometer steps and time during walking in children. Medicine and science in sports and exercise, 37(3), 513-520. [21] Akerberg, A., Linden, M., & Folke, M. (2012). How Accurate are Pedometer Cell Phone Applications?. Procedia Technology, 5, 787-792. [22] Crouter, S. E., Schneider, P. L., Karabulut, M., & Bassett, D. R. (2003). Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Medicine and Science in Sports and Exercise, 35(8), 1455-1460. [23] HUANG, B., & WU, X. (2011). Algorithm Research of Pedometer Based on MATLAB. System Simulation Technology, 2, 016. [24] Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. [25] M. Costa, A. L. Goldberger and C. K. Peng, 'Multi-scale Entropy Analysis of Biological Signals,' Physical Review E,Vol.71, pp.021906-1 - 021906-18, 2005. [26] M. Costa, A. L. Goldberger and C. K. Peng, 'Multi-scale Entropy Analysis of Complex Physiologic Time Series,' Physical Review Letters, Vol. 89, No.6, pp. 068102-1 - 068102-4, 2002 [27] Xiong, G. L., Zhang, L., Liu, H. S., Zou, H. J., & Guo, W. Z. (2010). A comparative study on ApEn, SampEn and their fuzzy counterparts in a multiscale framework for feature extraction. Journal of Zhejiang University SCIENCE A, 11(4), 270-279. [28] Czabke, A., Marsch, S., & Lueth, T. C. (2011, May). Accelerometer based real-time activity analysis on a microcontroller. In Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2011 5th International Conference on (pp. 40-46). IEEE. [29] Huang, Y., Zheng, H., Nugent, C., McCullagh, P., McDonough, S. M., Tully, M. A., & Connor, S. O. (2010, June). Activity monitoring using an intelligent mobile phone: a validation study. In Proceedings of the 3rd International Conference on PErvasive Technologies Related to Assistive Environments (p. 10). ACM. [30] Joyce Van de Vegte, (2002), 'Fundamentals of Digital Signal Processing.' Prentice Hall: pp.157-158. [31] LIAN Yiying, WANG Zhengzhen, LI Xuemei, WANG Juan, MI Huan, LI M eng. (Jul. 2012) Research on the Recommended Brisk Walking Speed and Stride Frequency of Ordinary Adults Aged from 20 to 59. Journal of Beijing Sport University, Vol. 35 No. 7 [32] Bassett Jr, D. R., Ainsworth, B. E., Leggett, S. R., Mathien, C. A., Main, J. A., Hunter, D. C., & Duncan, G. E. (1996). Accuracy of five electronic pedometers for measuring distance walked. Medicine and science in sports and exercise,28(8), 1071-1077. [33] Crouter, S. E., Schneider, P. L., & Bassett Jr, D. R. (2005). Spring-levered versus piezo-electric pedometer accuracy in overweight and obese adults.Medicine and science in sports and exercise, 37(10), 1673-1679. [34] Le Masurier, G. C., & Tudor-Locke, C. (2003). Comparison of pedometer and accelerometer accuracy under controlled conditions. Medicine and Science in Sports and Exercise, 35(5), 867-871. [35] Melanson, E. L., Knoll, J. R., Bell, M. L., et al. (2004). Commercially available pedometers: considerations for accurate step counting. Preventive medicine, 39(2), 361-368. [36] Schneider, P. L., Crouter, S. E., Lukajic, O., & Bassett, D. R. (2003). Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk.Medicine and Science in Sports and Exercise, 35(10), 1779-1784. [37] De Cocker, K. A., De Meyer, J., De Bourdeaudhuij, I. M., & Cardon, G. M. (2012). Non-traditional wearing positions of pedometers: Validity and reliability of the Omron HJ-203-ED pedometer under controlled and free-living conditions.Journal of Science and Medicine in Sport, 15(5), 418-424. [38] Tumkur, K., & Subbiah, S. (2012, September). Modeling Human Walking for Step Detection and Stride Determination by 3-Axis Accelerometer Readings in Pedometer. In Computational Intelligence, Modelling and Simulation (CIMSiM), 2012 Fourth International Conference on (pp. 199-204). IEEE.zh_TW
dc.description.abstractThe thesis presents a modified pedometer algorithm by using an accelerometer for young and middle-aged people. Thirty young persons (age: 22.27±1.57 years) and twenty-eight middle-aged persons (age: 48.45±5.60 years) volunteered to participate in this study. The application of t-test in two test subjects were significant differences in age, P = 0.001. Tri-axis accelerometer used in the experiment was produced by the company VTI technologies, model SCA3100-D07, the accelerometer which is adopt sampling frequency 200 Hz and sensitivity 68 count⁄((m/s^2)) is collected acceleration signal. All the subjects were told to wear the accelerometer at five specific positions of body include necklaces, arm, chest pocket, pants pocket and waist, simultaneously, collect the acceleration data. They are told to walk in the velocity 120 steps per minutes by using the metronome as fixed speed tool, using Multiscale Entropy to confirm the tri-axis acceleration signal differences between young and middle-aged people in the walking by using improved dynamic threshold algorithm as the basis of Step detection. There is significant difference in five position of MSE (P = 0.007) between young and middle-aged people in the walking frequency 120 (steps / min). Then we use improved dynamic threshold algorithm to count the accuracy of the number of steps, the average was 96.19 ± 6.61% and 94.37 ± 10.33%, and accuracy of the young and middle-aged step at five positions were no significant difference (P> 0.05), young people walking at different frequency experiment is 60, 80 and 100 (steps / min), and the calculation accuracy of the five wearing position are up to 90 percent. Accordingly there is good accuracy of improved dynamic threshold algorithm for tri-axis accelerometer signals in young and middle-aged steps.en_US
dc.description.abstract本研究提出一種加速規用於年輕、中年人之改良式的計步器演算法。以30名年齡22.27±1.57歲的年輕人與28名年齡48.45±5.60歲的中年人為實驗對象,應用t-test檢定兩組受測者在年齡上有顯著差異,P值為0.001。實驗中使用的三軸加速規為VTI technologies公司所生產的三軸加速度晶片,型號為SCA3100-D07,採用取樣頻率200 Hz,靈敏度68 count⁄((m/s^2))的設定收集加速度訊號。讓受測者同時配戴加速規於五個不同位置(項鍊、手臂、胸口口袋、褲子口袋與腰間),並同步收集加速度訊號的數據,步行時利用節拍器做為定速的工具,並以步行頻率120(步/分鐘)進行實驗,應用多尺度熵(Multiscale Entropy,MSE)來確認年輕人與中年人於行走時三軸加速度訊號的混亂度之差異,以改良之動態門檻演算法來做為步數檢測的依據。 年輕人與中年人在步行頻率 120 (步/分鐘)五個位置加速規之MSE有顯著差異(P = 0.007),應用改良之動態門檻演算法計算步數之準確度平均分別為96.19±6.61 %與94.37±10.33 %,且年輕人與中年人在五個位置步數準確度均無顯著差異(P>0.05)。年輕人在不同步行頻率實驗60、80與100(步/分鐘),五個佩戴位置步數計算準確度皆達90%以上。改良之動態門檻演算法於三軸加速規訊號在年輕人與中年人的步數計算上都有良好準確性。zh_TW
dc.description.tableofcontents誌謝辭 i 摘要 ii Abstract iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 論文架構 3 第二章 文獻探討 4 第一節 身體活動量與計步器之文獻探討 4 第二節 步數計算之文獻探討 5 第三節 計步演算法文獻探討 6 第四節 多尺度熵之文獻探討 8 第三章 研究方法 9 第一節 研究對象 9 第二節 研究設備 12 第三節 研究流程 14 第四節 步數計算演算法 16 第五節 資料處理與統計分析 18 第四章 研究結果 22 第一節 人體物理參數 22 第二節 年輕、中年人加速度訊號分析 23 第三節 四種步行頻率時域、頻域分析 30 第四節 步數計算演算法 36 第五章 討論 38 第一節 年輕人與中年人步數準確度比較 38 第二節 本論文演算法與文獻演算法準確度比較 40 第三節 濾波前後多尺度熵比較 41 第四節 年輕人與中年人步態比較 43 第六章 結論與建議 45 第一節 結論 45 第二節 建議 46 參考文獻 47 附錄一 52zh_TW
dc.subjectDynamic Thresholden_US
dc.subjectMultiscale Entropyen_US
dc.subjectPeak detectionen_US
dc.titleAssessing accelerometer based gait feature to step count analysis of middle aged with non-traditional wearing positionsen_US
dc.typeThesis and Dissertationen_US
Appears in Collections:應用數學系所


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.