Please use this identifier to cite or link to this item: `http://hdl.handle.net/11455/90454`
 標題: On blow up of nonlinear parabolic equation and their C-N methods非線性拋物方程式及其C-N方法的爆炸問題 作者: 周群Chen Chou 關鍵字: 爆炸非線性拋物方程Blows upNonlinear parabolic equation 引用: 1.L. A. Caffarrelli, A.Friedma Blow-up of solutions of nonlinear heat equations 2.C.H. Cho, S. Hamada, H.Okamoto On the finite difference approximation for a parabolic blow-up problem 3.A. Friedman, B. Mcleod Blow-up of positive solutions of semilinear heat equations 4.A. Friedman Partial differential equation of parabolic type 5.S. Ito On blow-up of positive solutions of semilinear parabolic equation 6.T. Nakagawa Blowing up of a finit difference solution to ut=uxx+u2 7.Murray H. Protter, Hans F. Weinberger Maximum principle in differential equation 摘要: We use the Crank-Nicolson method for the equation and then show that the numerical solution blows up as well. Moreover, We prove that the blow up time of our numerical solution tends to that of the solution when the mesh length h tends to 0.針對此非線性拋物型偏微分方程式，我們給予克蘭克-尼克爾森方法來討論方程式的解以及其具數值解的爆炸性問題。在適度的初始條件假設下， 此兩種解都在有限的時間內其L2 norm趨近於無窮大。在此論文我們也證明當網格長度趨近於零時數值解的爆炸時間會趨近原方程式解的爆炸時間。 URI: http://hdl.handle.net/11455/90454 文章公開時間: 2018-07-28 Appears in Collections: 應用數學系所

###### 文件中的檔案：

TAIR Related Article

Citations:

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.