Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90465
標題: Coexistence of superconductivity and ferromagnetic in single crystals RExCa1-x(FePyAs1-y)2 (RE=La、Pr)
RExCa1-x(FePyAs1-y)2 (RE=La、Pr)單晶中超導和鐵磁的並存
作者: Y.J.Ding
丁映鈞
關鍵字: 鐵基
單晶
超導
iron-based
single crystallin
superconductor
引用: 1. Faraday, M., On Hydrate of Chlorine. Quartly Journal of Science, 1823. 15. 2. Onnes, H.K., Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures, etc. IV. The resistance of pure mercury at helium temperatures. Comm. Phys. Lab. Univ. Leiden, 1991. 3. Meissner, W.R.O., Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften, 1993. 4. Piom, EXPULSION. Wikimedia Commons, 2005. 5. 趙繼軍, 陳.崗., 超導BCS理論的建立. 大學物理 第26卷第9期, 2007. 6. 周興江, 羅., 神奇的超導. 現代物理知識. 24卷第2期 (總140期). 7. N., C.L., Bound Electron Pairs in a Degenerate Fermi Gas. Phys Rev, 1956. 8. J, B., Zero-Point Vibrations and Superconductivity. Phys Rev, 1950. 9. H., F., Theory of the Su perconducting State. I. The Ground State at the Absolute Zero of Tem perature Phys Rev, 1950. 10. 黃竑傑, 零維銦奈米微粒的超導參數探討. 中央大學物理研究所, 93年. 11. D, V.L.G.a.L., Zh. Eksp. Teor. Fiz, 1950. 12. Abrikosov, A.A., On the Magnetic Properties of Superconductors of the Second Group. Soviet Physics JETP 5, 1957. 13. 譯者:林振輝, 超導體革命. 牛頓, 1987. 14. Kittel, C., Introduction-to-Solid-State-Physics-8th-Edition-by-Charles-Kittel. John Wiley & Sons,Inc, 2008. 15. Dew-Hughes, D., The critical current of superconductors: an historical review. Low Temperature Physics, 2001. 27(9): p. 713. 16. 梁忠熙, 高溫超導微波濾波器之研製與特性量測分析. 國立中央大學機械工程研究所碩士論文, 92年. 17. 羅會仟, 鐵基超導的前世今生. 物理, 2014. 43卷(7期). 18. 陳引幹, 高溫超導材料與其磁浮上之應用. 物理雙月刊, 2005. 廿七卷(四期). 19. Wu, M.K.A., J. R.Torng, C. J.Hor, P. H.Meng, R. L.Gao, L.Huang, Z. J.Wang, Y. Q.Chu, C. W., Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical Review Letters, 1987. 58(9): p. 908-910. 20. Yoichi Kamihara, H.H., Masahiro Hirano,, Ryuto Kawamura, Hiroshi Yanagi,Toshio Kamiya,, and Hideo Hosono, Iron-Based Layered Superconductor: LaOFeP. J. AM. CHEM. SOC., 2006. 128(31). 21. Takahashi, H., et al., Superconductivity at 43 K in an iron-based layered compound LaO(1-x)F(x)FeAs. Nature, 2008. 453(7193): p. 376-8. 22. REN Zhi-An, L.W., YANG Jie, YI Wei, SHEN Xiao-Li,LI Zheng-Cai, CHE Guang-Can, DONG Xiao-Li, SUN Li-Ling,ZHOU Fang, ZHAO Zhong-Xian, Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx] FeAs. CHIN.PHYS.LETT., 2008. 25(6). 23. 馬廷燦, 萬., 薑山, 鐵基超導材料製備研究進展. 科學通報, 2009. 54(5): p. 557-568. 24. Hsu, F.C.L., J. Y.Yeh, K. W.Chen, T. K.Huang, T. W.Wu, P. M.Lee, Y. C.Huang, Y. L.Chu, Y. Y.Yan, D. C.Wu, M. K., Superconductivity in the PbO-type structure alpha-FeSe. Proc Natl Acad Sci U S A, 2008. 105(38): p. 14262-4. 25. Wang, X.C., et al., The superconductivity at 18 K in LiFeAs system. Solid State Communications, 2008. 148(11-12): p. 538-540. 26. Rotter, M., M. Tegel, and D. Johrendt, Superconductivity at 38 K in the Iron Arsenide(Ba1−xKx)Fe2As2. Physical Review Letters, 2008. 101(10). 27. Luo, X.G., T. Wu, and X.H. Chen, Synthesis, Structure, and Phase Diagram of Iron-Based Superconductors: Bulk, in Iron-Based Superconductivity, P.D. Johnson, G. Xu, and W.-G. Yin, Editors. 2015, Springer International Publishing. p. 21-71. 28. Yeh, K.-W., et al., Tellurium substitution effect on superconductivity of the α-phase iron selenide. EPL (Europhysics Letters), 2008. 84(3): p. 37002. 29. Rodgers, J.A., et al., Suppression of the superconducting transition ofRFeAsO1−xFx(R=Tb, Dy, and Ho). Physical Review B, 2009. 80(5). 30. Zhu, X., et al., Transition of stoichiometricSr2VO3FeAsto a superconducting state at 37.2 K. Physical Review B, 2009. 79(22). 31. Kawaguchi, N., et al., New Iron Arsenide Oxides (Fe2As2)(Sr4(Sc,Ti)3O8), (Fe2As2)(Ba4Sc3O7.5), and (Fe2As2)(Ba3Sc2O5). Applied Physics Express, 2010. 3(6): p. 063102. 32. Minoru Nohara, S.K., Kazutaka Kudo, Yoshihiro Oshiro, Shingo Araki,Tatsuo C. Kobayashi, Kenta Oku, Eiji Nishibori, Hiroshi Sawa, Iron–platinum–arsenide superconductors Ca10(PtnAs8)(Fe2-xPtxAs2)5. Solid State Communications, 2012. 152(635-639). 33. Kazutaka Kudo , D.M., Masaya Takasuga, Yuki Sugiyama, Kento Sugawara,Naoyuki Katayama, Hiroshi Sawa, Hiroaki S. Kubo , Kenta Takamori , Masanori Ichioka, Tatsuo Fujii,Takashi Mizokawa & Minoru Nohara, Superconductivity innCa10(Ir4As8)(Fe2As2)5 withnSquare-Planar Coordination of Iridium. SCIENTIFIC REPORTS, 2013. 3(3101). 34. Materials Science and Technology Division, Pressure effects on two superconducting iron-based families. Rep. Prog. Phys., 2011. 74(124502): p. 14. 35. Hidenori Hiramatsu, T.K., Toshio Kamiya, Masahiro Hirano,Hideo Hosono, Water-induced superconductivity in SrFe2As2. PHYSICAL REVIEW B, 2009. 80(052501). 36. Yusuke Sakai, L.Z., Masanari Izumi, Kazuya Teranishi, Ritsuko Eguchi, Hidenori Goto, Taiki Onji,Shingo Araki, Tatsuo C. Kobayashi, and Yoshihiro Kubozono, Superconducting phases in (NH3)yMxFeSe1-zTez (M = Li, Na, and Ca). PHYSICAL REVIEW B, 2014. 89(144509). 37. Deguchi, K., et al., Alcoholic beverages induce superconductivity in FeTe1 −xSx. Superconductor Science and Technology, 2011. 24(5): p. 055008. 38. Hosono, H. and S. Matsuishi, Superconductivity induced by hydrogen anion substitution in 1111-type iron arsenides. Current Opinion in Solid State and Materials Science, 2013. 17(2): p. 49-58. 39. Matsuishi, S., et al., Structural analysis and superconductivity of CeFeAsO1−xHx. Physical Review B, 2012. 85(1). 40. Podolsky, D., Untangling the Orbitals in Iron-Based Superconductors. Physics, 2012. 5. 41. Fa Wang1, D.-H.L., The Electron-Pairing Mechanism of Iron-Based Superconductors. SCIENCE, 2011. 332. 42. Stewart, G.R., Superconductivity in iron compounds. Reviews of Modern Physics, 2011. 83(4): p. 1589-1652. 43. Dong, J., et al., Competing orders and spin-density-wave instability in La(O1−xFx)FeAs. EPL (Europhysics Letters), 2008. 83(2): p. 27006. 44. de la Cruz, C., et al., Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems. Nature, 2008. 453(7197): p. 899-902. 45. Peierls, R.E., Quantum Theory of Solids. Oxford University Press, 1955. 46. Thorne, R.E., Charge-density-wave condictors. American Institute of Physics, 1996. 47. 盧宗伯, 摻雜磁性稀土元素之新穎電洞行鐵基超導體的研究. 國立中興大學物理研究所博士論文, 99年. 48. Xu, C., M. Müller, and S. Sachdev, Ising and spin orders in the iron-based superconductors. Physical Review B, 2008. 78(2). 49. Christian Pfleiderer, R.H., High-temperature superconductivity - Schizophrenic electrons. NATURE, 2007. 450(22). 50. Rivera, M.A.S., SOP-Siemens-XRD-Diffraktometer-D5000. 2006. 51. 儀器總覽 材料分析儀器. 52. Leuven, K. X-ray diffraction – Bruker D8 Discover. Available from: http://fys.kuleuven.be/iks/nvsf/experimental-facilities/x-ray-diffraction-2013-bruker-d8-discover. 53. 羅聖全, 科學基礎研究之重要利器─掃描式電子顯微鏡(SEM). 科學研習, 2013. 52. 54. CORPORATION, T. Electron Microscope SM-200. Available from: http://www.topcon.com.sg/industrial/sm.html. 55. University, N.T. Background information - What is scanning electron microscopy? ; Available from: http://www.ammrf.org.au/myscope/sem/background/#detail. 56. 林詠軒, 鐵基單晶超導RE0.18Ca0.82(Fe1-xNixAs)2物理特性研究. 國立中興大學物理學系研究所 碩士學位論文, 103年. 57. CRYO, 10 K Closed Cycle Refrigerator Systems. 58. 科豐國際有限公司, 第一章 四點探針 電阻量測. 59. 鄭又元, 簡.林.龔., 第九章 磁特性分析 - 超導量子干涉磁量儀. 60. 楊鴻昌, 超導量子干涉磁量儀. 科儀新知, 80年. 十二卷(十二卷). 61. Hujan, Z.B.H., Magneto–Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures. University of York Department of Physics, 2013. 62. 邱彥霖, 氧對奈米尺度Co/Ge(111)超薄膜介面磁性影響之研究. 東海大學物理學系, 2011. 63. S.Sugano, N.K., Magneto-Optics. Springer, 1999. 64. 郭美伶, 建立磁光科爾量測系統與製作鐵、鍺超薄膜之磁特性研究. 國立台灣師範大學光電科技研究所, 99年. 65. Hysteresis. 2011; Available from: http://ictwiki.iitk.ernet.in/wiki/index.php/Hysteresis.
摘要: 鐵基超導材料中122類型的鐵砷族以Ca(FeAs)2為母體,施壓改變晶格結構或摻雜部分元素都能從電性量測發現成功壓抑自旋密度波(SDW),進而促成超導現象的發生。其中,鐵基超導材料結構中的FeAs層被認為是超導發生的關鍵,其它上下層狀僅提供或取出載子。因此本實驗選擇目前122類型中轉變溫度最高的La0.18Ca0.82(FeAs)2 (Tc=41K)與Pr0.18Ca0.82(FeAs)2 (Tc=49K),以砷(As)同族的磷(P)做取代,探討當改變FeAs層時產生的變化現象。 本研究用自我助熔法製作La0.18Ca0.82(FeAs0.88P0.12)2 和Pr0.18Ca0.82(FeAs0.92P0.08)2單晶樣品,由光學顯微鏡及掃描式電子顯微鏡確定樣品的表面形貌;X-ray繞射分析儀確定樣品的結構是否為122類型鐵基材料的四方晶系Th(CrSi)2結構。其物理性質的部份分別用封閉式迴路冷卻系統量測電阻現象,以及超導量子干涉磁量儀確定樣品低溫下的磁性反應,發現除了超導性外還有鐵磁現象;為了確定磁性是否來自單晶樣品表面,本研究還做了磁光克爾效應實驗。
Ca(FeAs)2 is the parent compound of 122-type iron pnictide materials. With chemical doping or varying structures under high pressure , the SDW(spin density wave) of these materials can be suppressed and that results in superconductivity. FeAs layers are considered as an important ingredient for the superconductivity in the iron-based superconductors. The other layers between the FeAs layers are the carrier reservoirs. In this thesis, we choosed the highest critical temperature materials La0.18Ca0.82(FeAs)2 (Tc=41K) and Pr0.18Ca0.82(FeAs)2 (Tc=49K) in 122-type iron-based superconductor to discuss the variation with doping phosphorus in arsenic. Single crystalline samples of La0.18Ca0.82(FeAs0.88P0.12)2 and Pr0.18Ca0.82(FeAs0.92P0.08)2 were prepared by using self-flux method. We first observe the surface planarity of samples by optical microscopy and scanning electron microscopy. In order to certify Th(CrSi)2-type structure and electrical resistivity, XRD and CCR are used. Furthermore, magnetic property measurement system can measure superconductivity and ferromagnetic at low temperature. Moreover, magneto-optic Kerr effect experiments are applied to measure magnetism of sample surface.
URI: http://hdl.handle.net/11455/90465
文章公開時間: 2016-08-03
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.