Please use this identifier to cite or link to this item:
標題: Explore intrinsically electrical characteristics of atomically thin SnS2 flake
作者: Che-Yi Lin
關鍵字: 二硫化錫
low frequency noise
引用: [1] J. Bardeen ,and W. H. Brattain, Physical Review 74.2 (1948): 230. [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, science 306.5696 (2004): 666-669. [3] H. T. Yuan,M. Toh, K. Morimoto, W. Tan, F. Wei, H. Shimotani, Ch. Kloc, and Y. Iwasa, Applied Physics Letters 98.1 (2011): 012102. [4] C. Julien, M. Eddrief, I. Samaras, M. Balkanski, Materials Science and Engineering: B 15.1 (1992): 70-72. [5] C. Y. Fong, and M. L. Cohen, Physical Review B 5.8 (1972): 3095. [6] J. George, and K. S. Joseph, Journal of Physics D: Applied Physics 15.6 (1982): 1109. [7] Th. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, and J. Pollmann, Physical Review B 64.23 (2001): 235305. [8] H. Chang , E. In , K. Kong , J. Lee , Y. Choi , and B. Ryu, The Journal of Physical Chemistry B 109.1 (2005): 30-32. [9] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, Nano letters 6.12 (2006): 2667-2673. [10] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Physical review letters 97.18 (2006): 187401. [11] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano letters 7.2 (2007): 238-242. [12] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, & H. Dai, Nature nanotechnology 3.9 (2008): 538-542. [13] Z. H. Ni , H. M. Wang , J. Kasim , H. M. Fan , T. Yu , Y. H. Wu , Y. P. Feng , and Z. X. Shen, Nano letters 7.9 (2007): 2758-2763. [14] H. Li , J. Wu , X. Huang , G. Lu , J. Yang , X. Lu , Q. Xiong , and H. Zhang, ACS nano 7.11 (2013): 10344-10353. [15] H. T. Yuan, M. Toh, K. Morimoto, W. Tan, F. Wei, H. Shimotani, Ch. Kloc, and Y. Iwasa, Applied Physics Letters 98.1 (2011): 012102-012102. [16] H. S. Song, S. L. Li, L. Gao, Y. Xu, K. Ueno, J. Tang, Y. B. Cheng and K. Tsukagoshi , Nanoscale 5.20 (2013): 9666-9670. [17] N. R. Pradhan, D. Rhodes, Q. Zhang, S. Talapatra, M. Terrones, P. M. Ajayan, and L. Balicas, Applied Physics Letters 102.12 (2013): 123105. [18] 孫允武,〈場效電晶體(FET)原理〉,,摘錄於12 May 2015。 [19] D. K. Schroder, 'Semiconductor Material and Device Characterization', 2nd Edition, John Wiley and Cons, Inc., 1998. [20] 蔡淑慧。《半導體工程 精選》。台北:五南出版,2007。 [21] Martin von Haartman and Mikael Östling, 'Low-Frequency Noise in Advanced MOS Devices', Springer Publishing Company, Inc., 2007 [22] G. Ghibaudo and T. Boutchacha, Microelectronics Reliability 42.4 (2002): 573-582. [23] C. Julien, M. Eddrief, I. Samaras, M. Balkanski, Materials Science and Engineering: B 15.1 (1992): 70-72. [24] Y. Xu, T. Minari, K. Tsukagoshi, J. Chroboczek, G. Ghibaudo, Journal of Applied Physics 107.11 (2010): 114507. [25] X. Xie, D. Sarkar, W. Liu, J. Kang, O. Marinov, M. J. Deen, and K. Banerjee, , ACS nano 8.6 (2014): 5633-5640.
摘要: 本研究將探討二硫化錫薄膜n型場效應電晶體的本徵電學特性,利用機械剝離法的方式獲得約為4層(2.3 nm)的二硫化錫薄膜,並透過光學顯微鏡的影像分析及原子力顯微鏡搭配使用,得知二硫化錫薄膜厚度與光學顯微鏡影像在紅、綠、藍三種頻道色階之間的關係,這樣的關係可以使我們快速得知薄膜樣品的厚度。另一方面,我們利用電子束微影技術與熱蒸鍍技術成功製作出具有四點電極的奈米元件,其元件通道長度 L=1.0 μm 及寬度 W=3.1 μm,通過基本電性量測,測得元件在室溫下的電阻值為 129.6 kΩ ,接點電阻大小約為 5 kΩ ,開關比高達 10^5 、載子遷移率約為 3.2 cm^2 V^(-1) s^(-1)。透過 80 K - 360 K 的變溫量測,我們發現當溫度越低時電阻值越大,並且其關係遵守阿瑞尼斯方程式;電性數據在兩線與四線的量測比較中,我們證明所製作的元件接點電阻可以忽略不考慮。利用兩線元件結構接露本徵低頻雜訊,我們發現二硫化錫在特定情況下會產生隨機電報訊號(Random Telegraph Signals),這樣的特性可以預期成為一種偵測器或樣品鑑定的指標。本研究是全世界第一個針對該奈米系統所進行的深入本徵電學研究,預期將為二維片狀電子元件的開發帶來新的衝擊。
Here, fakes made of a few layers of SnS2 were obtained by mechanical exfoliation of a semiconducting SnS2 bulk crystal grown by chemical vapor transport and then deposited on a heavily doped Si substrate covered with a 285-nm-thick SiO2 layer. The number of layers was quickly determined by examining the difference in the contrast of the color images and the grayscale images. To study the electrical properties of SnS2 flakes, field-effect transistors (FETs) were fabricated using standard e-beam lithography and thermal evaporation. Atomically thin SnS2 FETs displayed a clear n-type demeanor in charge transport with a current modulation of up to 105 and mobility of ~3.2 cm2V-1s-1. Through careful analysis of temperature dependent resistance between two- and four-terminal FETs, we found the contact resistance extracted was small than ~5 % of total FET resistance, implying the contact resistance can be eliminated in our device fabrication process. Besides, low-frequency noise of intrinsic SnS2 flakes can be uncovered. Our result not only gives atomic insights into the electrical properties of SnS2 FETs for the first time, but also bring a big impact to the development of 2D optoelectronics.
文章公開時間: 2018-08-12
Appears in Collections:物理學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.