Please use this identifier to cite or link to this item:
標題: In Vivo Imaging System Building - Improvement of Light Source and Filters in the System
作者: June-Wei Wu
關鍵字: 活體影像系統
In Vivo Imaging System Building
light improvement
black box design
引用: [1] S.O.Kasap,《光電半導體元件》,黃俊達等人編譯,全威圖書,2006年 [2] 耿繼業、何建娃,《幾何光學》,全華,2001年 [3] 邱建偉,《高斯光學對於光同調斷層攝影術之影響》,私立中原大學應用物 理研究所碩士學位論文,2006年1月 [4] 林宜蒨,《新型非球面光纖透鏡之準分子雷射加工及其光學應用》,國立成 功大學機械工程研究所碩士論文,2008年7月 [5] 呂昱寬,《波前量測運用於雷射與光纖耦合之研究》,國立中山大 學光電工程研究所博士論文,2008年7月 [6] 林沛穎,《影像相關概論(一) 從拆解影像元素進入影像處理》 [7] 莊克士,'醫學影像物理學',合記圖書,第一、十七、十八、十九章 , (1998) [8] 陳建人,'光學元件精密製造與檢測' ,國家實驗研究院儀器科技研究中心 [9] Roper, Inc [10] Xenogen, Inc [11] Newport, Inc [12]《XENOGEN》,IVISR Imaging System 200 Series Product Sheet,2004 [13] S.O. Kasap, 'Optoelectronics and Photonics: Principles and Practices', (Prentice Hall, 2001) Chap 1, Chap5 [14] LA Shepp, BF Logan, 'The fourier reconstruction of a head section'. IEEE TRANS. Nucl. Sci. NS-21, 21-43 (1974) [15] F. Bloch, W.W Hansen, M.E. Packard, 'Nuclear induction'. Phys. Chem. Phys. 27, 572-573 (1946) [16] R. Damdian, L. Minkoff, M. Goldsmith, M. Stanford, J. Koutcher,'Field-focusing nuclear magnetic resonance(FONAR) visualization of a tumor in a live animal'. Science, 194, 1430-1430 (1976) [17] P.C. Lauterbur, 'Image formation by induced local interactions:examples employing nuclear magneticresonance'.Nature 242, 190 [18] 《MICROSCOPE UNITS》,Mitutoyo Corporation,No. E4191- 378
摘要: 本研究將原先實驗室架設活體影像系統的暗箱重新設計,並更換原來使用的氙燈光源,及置換濾光片,使系統具有更高的訊號辨識度。 活體影像系統是藉由生物冷光或螢光,以非侵入式方式,從生物體外拍攝活體內的光學影像,可即時監控細胞活動、腫瘤位置與疾病的擴散,也可用於拍攝開刀後的活體切片組織影像。原理是利用打入活體特定部位的螢光染劑,經由特定波長光源照射,激發出螢光並透過偵測器得知發光的位置及強度,直接觀察活體體內的一些功能性資訊,不須再經由切片或開刀處理,即可獲得資訊。 實驗包括三大部分:(一)暗箱設計與開發:利用不鏽鋼板採接近一體成形的方式製作暗箱,可大幅減少外部環境光源影響活體影像系統量測時的雜訊。(二)更換光源:將原氙燈光源更改為LED光源,並利用積分柱及透鏡組合,使光源均勻度及強度增加,照射面積更廣,曝光時間縮短,減少檢測時間。(三)改善濾光片組合: 使用高通濾光片取代原氙燈的接收型濾光片,提高螢光訊號的接收並降低訊噪比。 本系統是國內相關設備中,敏感度最高、雜訊最低且成本較低的系統之一。
This study redesign black box that is originally erected In Vivo Imaging System in the laboratory, and replace the original use of Xenon light source as well as change filter to make the system have a higher degree of recognition signals. In Vivo imaging system is shot optical imaging in vivo from in vitro in a non-intrusive way by Bioluminescence or Fluorescence, which can monitor cellular activities, tumor locations and spread of the disease in real time and can also be used to take vivo biopsy tissue images after surgery. The principle is use Dye that is injected into specific parts in vitro to trigger Fluorescence through a specific wavelength light source, recognize the locations and the intensity of the light through detector, and directly observe some functional information in vivo without biopsy or surgery and then you can get information. The experiment includes three parts: (1)The design and development of black box : It makes black box in integrated way with stainless steel plates, which can significantly reduce the noise affected by the external ambient light when measured in vivo imaging system .(2)Replace light sources: Replace the original Xenon light sources with LED light sources, and use the integral rod and combination of lens, so that increase light uniformity and intensity, widen irradiation area, shorten the exposure time and reduce the detection time.(3)Improve the combination of filter: Using High-pass filter to replace the original Xenon light of the Receive filter, improve Fluorescence signal reception and reduce the signal to noise ratio. This system is one of the highest sensitive, the lowest noise and the lower cost systems in the country.
文章公開時間: 10000-01-01
Appears in Collections:物理學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.