Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90531
標題: AC susceptibility of Dy0.18 Ca0.82 (Fe0.92 Co0.08 As)2 superconductor
超導體Dy0.18 Ca0.82 (Fe0.92 Co0.08 As)2 的 交流磁化率研究
作者: Sheng-Tai Kuo
郭昇泰
關鍵字: 
no
引用: [1] W. Meissner and R. Ochsenfeld, Naturwiss, 21(1933), 787. [2] 林振輝,超導體革命,牛頓出版社。 [3] Yoichi Kamihara, Hidenori Hiramatsu, Masahiro Hirano, Ryuto Kawamura, Hiroshi Yanagi,Toshio Kamiya, and Hideo Hosono, 'Iron-Based Layered Superconductor:LaOFeP ', J. AM. CHEM. SOC., 128 (2006), 10012-10013 [4] Marianne Rotter, Marcus Tegel, and Dirk Johrendt, 'Spin-Density-Wave Anomaly at 140 K in the Ternary Iron Arsenide BaFe2As2', Physical Review B, 78 (2008),020503. [5] Marianne Rotter, Marcus Tegel, and Dirk Johrendt, 'Superconductivity at 38 k in the Iron Arsenide (Ba1-XKX)Fe2As2', Physical Review Letters, 101 (2008), 107006. [6] Johnpierre Paglione, and Richard L. Greene, 'High-Temperature Superconductivity in Iron-Based Materials', Nature Physics, 6 (2010), 645-58. [7] Ac Susceptibility Measurement in High-Tc Superconductors (University of Florida,Department of Physics, Advanced Physics Laboratory). [8] D.X. Chen, J. Nogues, K.V. Rao, 'A.c. susceptibility and intergranular critical current density of high Tc superconductors', Cryogenics, 29 (1989), 800-808. [9] Physical Property Measurement System User's Manual. [10] Derek Craik, Magnetism-Principles and Applications (John Wiley & Sons, Chichester, 1995). [11] T. Ishida, and R. Goldfarb, 'Fundamental and Harmonic Susceptibilities of Yba2Cu3O7- ', Physical Review B, 41 (1990), 8937-48. [12] Resistivity Measurement (MASTechnology). [13] Physical Property Measurement System AC Measurement System (ACMS) Option User's Manual. [14] J. Pietosa, D. J. Gawryluk, R. Puzniak, A. Wisniewski, J. Fink-Finowicki, M. Kozlowski,and M. Berkowski, 'Pressure-Induced Enhancement of the Superconducting Properties of Single-Crystalline FeTe0.5Se0.5', J. Phys. Condens. Matter, 24 (2012),265701. [15] Hsieh, Yi-Shan, 'Investigation of the specific heat of iron-based superconductors FeSe and Ba(Fe1-xCox)2As2'. [16] F. Ronning, T. Klimczuk, E. D. Bauer, H. Volz, and J. D. Thompson, 'Synthesis and Properties of CaFe2As2 single Crystals', Journal of Physics: Condensed Matter, 20 (2008), 322201. [17] L. Harnagea, S. Singh, G. Friemel, N. Leps, D. Bombor, M. Abdel-Hafiez, A. U. B.Wolter, C. Hess, R. Klingeler, G. Behr, S. Wurmehl, and B. Büchner, 'Phase Diagram of the Iron Arsenide Superconductors Ca(Fe1-XCoX)2As2(0⩽X⩽0.2)', Physical Review B, 83 (2011), 094523. [18] Neeraj Kumar, Songxue Chi, Ying Chen, Kumari Rana, A. Nigam, A. Thamizhavel, William Ratcliff, S. Dhar, and Jeffrey Lynn, 'Evolution of the Bulk Properties, Structure, Magnetic Order, and Superconductivity with Ni Doping in CaFe2−XNixAs2', Physical Review B, 80 (2009), 144524. [19] Marcin Matusiak, Zbigniew Bukowski, and Janusz Karpinski, 'Nernst Effect in Single Crystals of the Pnictide Superconductor CaFe1.92Co0.08As2 and Parent Compound CaFe2As2', Physical Review B, 81 (2010), 020510. [20] Yanpeng Qi, Zhaoshun Gao, Lei Wang, Dongliang Wang, Xianping Zhang, Chao Yao, Chunlei Wang, Chengduo Wang, and Yanwei Ma, 'Transport Properties and Anisotropy in Rare-Earth Doped CaFe2As2 single crystals with 𝑇𝑐 above 40 K', Superconductor Science and Technology, 25 (2012), 045007. [21] R. B. Goldfarb, M. Lelental, and C. A. Thomson, 'Magnetic Susceptibility of Superconductors and Other Spin Systems', edited by R. A. Hein, T. L. Francavilla, and D. H. Liebenberg (Plenum, New York, 1992). [22] D. Dew-Hughes, 'The critical current of superconductors: an historical review', Low Temp. Phys., 27 (2001), 1401180. [23] X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, R. C. Yu, F. Y. Li, and C. Q. Jin,'The Superconductivity at 18 K in Lifeas System', Solid State Communications, 148(2008), 538-540. [24] I. A. Nekrasov, Z. V. Pchelkina, M. V. Sadovskii, 'Electronic structure of new LiFeAs high-𝑐 superconductor', JETP Letters, Volume 88, Issue 8 (2008), pp 543-545. [25] Joshua H. Tapp, Zhongjia Tang, Bing Lv, Kalyan Sasmal, Bernd Lorenz, Paul C. W. Chu, and Arnold M. Guloy, 'LiFeAs: An Intrinsic Feas-Based Superconductor with 𝑐 = 18 K', Physical Review B, 78 (2008), 060505 . [26] F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, 'Superconductivity in the Pbo-Type Structure Alpha-FeSe', Proc Natl Acad Sci U S A, 105 (2008), 14262-4. [27] Kuo-Wei Yeh, Tzu-Wen Huang, Yi-lin Huang, Ta-Kun Chen, Fong-Chi Hsu, Phillip M. Wu, Yong-Chi Lee, Yan-Yi Chu, Chi-Lian Chen, Jiu-Yong Luo, Der-Chung Yan, and Maw-Kuen Wu, 'Tellurium Substitution Effect on Superconductivity of the Alpha-Phase Iron Selenide', EPL (Europhysics Letters), 84 (2008), 37002. [28] T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. S. Hor, J. Allred, A. J. Williams, D. Qu, J. Checkelsky, N. P. Ong, and R. J. Cava, 'Extreme Sensitivity of Superconductivity to Stoichiometry in Fe1+Se', Physical Review B, 79(2009), 014522. [29] A. K. Pramanik, L. Harnagea, S. Singh, S. Aswartham, G. Behr, S. Wurmehl, C. Hess,R. Klingeler, and B. Büchner, 'Critical Current and Vortex Dynamics in Single Crystals of Ca(Fe1−XCoX)2As2', Physical Review B, 82 (2010), 014503. [30] E. Moraitakisy, M. Anagnostouy, M. Pissasy, V. Psyharisy, D. Niarchosy, G. Stratakosz, 'Deposition of YBa2Cu3O7− thin films over large areas with a simple sputtering technique for microwave applications', Supercond. Sci. Technol., 11(1998), 686–691. [31] Ismaeil Abdolhosseini, Parviz Kameli, and Hadi Salamati, 'The Effect of Precursor Powder Size on the Microstructure and Intergranular Properties of (Bi,Pb)2Sr2Ca2Cu3Oy Superconductors', JJAP, Vol. 47, No. 6 (2008), 4505- 4510.
摘要: 在本實驗中,我們將Dy、Ca、CoAs、FeAs以適當的莫爾數比例,混和製作單晶Dy0.18 Ca0.82 (Fe0.92 Co0.08 As)2樣品。我們使用 PPMS 的 AC Measurement System(ACMS)套件和電阻套件對我們的單晶樣品進行量測。 由電阻率和交流磁化率的量測,我們得知樣品的超導臨界溫度Tc,onset 為 17 K。從不同交流磁場的交流磁化率量測中 我們發現Tc,onset 會隨交流磁場變大而下降;在相同溫度下的交流磁化率虛部隨著頻率增加而增加。我們也量測不同外加直流磁場下的磁化強度,並經由 Bean's model 計算得到不同磁場下的臨界電流密度。 本實驗確認單晶Dy0.18 Ca0.82 (Fe0.92 Co0.08 As)2樣品的下臨界磁場(Hc1 )很小 即,使在地磁的環境下,將樣品溫度經'零磁場冷卻(ZFC)'到臨界溫度之下時,樣品已經處於超導混和態(mixed state),有磁束被釘札在樣品內部。
In this research, the Dy0.18 Ca0.82 (Fe0.92 Co0.08 As)2 single crystal with non-stoichiometric compositions of Dy、Ca、CoAs and FeAs was prepared by the self-flux method. We used the AC Measurement System (ACMS) option and resistivity option of PPMS to measure our single crystal samples. The superconducting transition temperature Tc,onset is obtained 17 K by the resistivity and ac susceptibility measurements. The results of ac susceptibility measurement show that Tc,onset decreases with increasing ac magnetic field. In addition, the imaginary part susceptibility enhances with increasing frequency is observed. The field dependence of the inductive critical current density is calculated by the Bean's model according to the hysteresis loop of the dc magnetization measurement. This research confirms that the superconducting lower critical field (Hc1 ) of the Dy0.18 Ca0.82 (Fe0.92 Co0.08 As)2 single crystal is extremely small. The specimen is in the superconducting mixed state as cooling down to T < Tc in the earth-field environment. The magnetic flux is pinned in the sample even under the 'Zero-Field-Cooled (ZFC)' process.
URI: http://hdl.handle.net/11455/90531
文章公開時間: 2015-07-16
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.