Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90537
標題: Ultra-violet photoresponse of Mn doped ZnO nanowires
錳摻雜氧化鋅奈米線的紫外光反應機制研究
作者: Chih-Chuan Su
蘇志川
關鍵字: 氧化鋅
奈米線
奈米元件
紫外線偵測器
ZnO
nanowires
nanodevice
UV sensor
引用: 1. China Pat., ZL 99 1 27373.7, 2005. 2. C. Young, S. K. Chan and I. K. Sou, Visible / Solar-blind Ultraviolet Detectors, Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, 2003. 3. R. Lucas, T. McMichael, W. Smith and B. Armstrong, Solar ultraviolet radiation : global burden of disease from solar ultraviolet radiation, World Health Organization, Geneva, 2006. 4. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, Journal of Applied Physics, 2005, 98, 041301-041103. 5. F. Decremps, F. Datchi, A. M. Saitta, A. Polian, S. Pascarelli, A. Di Cicco, J. P. Itie and F. Baudelet, Physical Review B, 2003, 68, 104101. 6. W. Fan, H. Xu, A. L. Rosa, T. Frauenheim and R. Q. Zhang, Physical Review B, 2007, 76, 073302. 7. D. C. Look, Materials Science and Engineering: B, 2001, 80, 383-387. 8. D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell and W. C. Harsch, Solid State Communications, 1998, 105, 399-401. 9. Y. Chen, D. M. Bagnall, H.-j. Koh, K.-t. Park, K. Hiraga, Z. Zhu and T. Yao, Journal of Applied Physics, 1998, 84, 3912-3918. 10. P. Fons, K. Iwata, S. Niki, A. Yamada and K. Matsubara, Journal of Crystal Growth, 1999, 201–202, 627-632. 11. R. D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M. Downes, R. P. Sharma, T. Venkatesan, M. C. Woods, R. T. Lareau, K. A. Jones and A. A. Iliadis, Applied Physics Letters, 1997, 70, 2735-2737. 12. J. Narayan, K. Dovidenko, A. K. Sharma and S. Oktyabrsky, Journal of Applied Physics, 1998, 84, 2597-2601. 13. B. Hahn, G. Heindel, E. Pschorr-Schoberer and W. Gebhardt, Semiconductor Science and Technology, 1998, 13, 788. 14. M. Kasuga and S. Ogawa, JAPAN. J. APPL. PHYS., 1983, 22, 794-798. 15. N. Takahashi, K. Kaiya, T. Nakamura, Y. Momose and H. Yamamoto, Japanese journal of applied physics, 1999, 38, L454. 16. M. Saito, Journal of Industrial Textiles, 1993, 23, 150-164. 17. Q. Li, S.-L. Chen and W.-C. Jiang, Journal of Applied Polymer Science, 2007, 103, 412-416. 18. P. Nagarajan and V. Rajagopalan, Science and Technology of Advanced Materials, 2008, 9, 035004. 19. Wikipedia, Zinc oxide, http://en.wikipedia.org/wiki/Zinc_oxide, 2014. 20. Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton and J. R. LaRoche, Materials Science and Engineering: R: Reports, 2004, 47, 1-47. 21. Z. L. Wang, Materials Science and Engineering: R: Reports, 2009, 64, 33-71. 22. A. B. Djurišić, A. M. C. Ng and X. Y. Chen, Progress in Quantum Electronics, 2010, 34, 191-259. 23. C. Soci, A. Zhang, X.-Y. Bao, H. Kim, Y. Lo and D. Wang, Journal of Nanoscience and Nanotechnology, 2010, 10, 1430-1449. 24. Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. La Roche and S. J. Pearton, Applied Physics A: Materials Science & Processing, 2005, 80, 497-499. 25. P. Shi-Ming, S. Yan-Kuin, J. Liang-Wen, Y. Sheng-Joue, W. Cheng-Zhi, C. Wei-Bin, C. Wan-Chun and T. Chi-Nan, IEEE Electron Device Letters, 2011, 32, 339-341. 26. P. Shi-Ming, S. Yan-Kuin, J. Liang-Wen, Y. Sheng-Joue, T. Chi-Nan, H. Jhih-Hong, C. Zong-Syun and W. Cheng-Zhi, IEEE Transactions on Electron Devices, 2011, 58, 2036-2040. 27. P.-H. Yeh, Z. Li and Z. L. Wang, Advanced Materials, 2009, 21, 4975-4978. 28. A. Choi, K. Kim, H.-I. Jung and S. Y. Lee, Sensors and Actuators B: Chemical, 2010, 148, 577-582. 29. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, Applied Physics Letters, 2004, 84, 3654-3656. 30. Z. Fan, D. Wang, P.-C. Chang, W.-Y. Tseng and J. G. Lu, Applied Physics Letters, 2004, 85, 5923-5925. 31. S.-E. Ahn, H. J. Ji, K. Kim, G. T. Kim, C. H. Bae, S. M. Park, Y.-K. Kim and J. S. Ha, Applied Physics Letters, 2007, 90, 153106-153103. 32. C. Ming-Wei, J. R. D. Retamal, C. Cheng-Ying and H. Jr-Hau, IEEE Electron Device Letters, 2012, 33, 411-413. 33. Q. H. Li, T. Gao, Y. G. Wang and T. H. Wang, Applied Physics Letters, 2005, 86, 123117-123113. 34. Y. T. Lee, S. R. A. Raza, P. J. Jeon, R. Ha, H.-J. Choi and S. Im, Nanoscale, 2013. 35. C. Yen-De, C. Wen-Yuan, H. Ching-Yuan, C. Cheng-Ying, H. Chih-Hsiang, L. Su-Jien, W. Tai-Bor and H. Jr-Hau, IEEE Transactions on Electron Devices, 2011, 58, 1735-1740. 36. Y. Lu, Y. Lin, T. Xie, S. Shi, H. Fan and D. Wang, Nanoscale, 2012, 4, 6393-6400. 37. Y. Wu, K. V. Rao, W. Voit, T. Tamaki, O. Jayakumar, L. Belova, Y. Liu, P. Glans, C. Chang and J. H. Guo, IEEE Transactions on Magnetics, 2010, 46, 2152-2155. 38. D. McMullan, Scanning, 1995, 17, 175-185. 39. H. G. Rudenberg and P. G. Rudenberg, in Advances in Imaging and Electron Physics, ed. W. H. Peter, Elsevier, 2010, vol. Volume 160, pp. 207-286. 40. S. Szu, X-Ray Diffraction (XRD), http://ezphysics.nchu.edu.tw/CTSP/XRD%20power%20point.pdf. 41. T.-Y. Hsu, S.-H. Lai, H.-H. Hsieh, M.-D. Lan, C.-C. Su and M.-S. Ho, Journal of Physics and Chemistry of Solids, 2013, 74, 51-56. 42. Y.-C. Lin, Master, National Chung Hsing University, 2012. 43. W.-H. Chen, Master, National Chung Hsing University, 2013. 44. Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura and Y. Ohya, Japanese journal of applied physics, 1994, 33, 6611-6615. 45. J. Kim, H. S. Jeong, Y. H. Ahn, S. Lee and J. Y. Park, physica status solidi (a), 2012, 209, 972-976. 46. Y. Li, F. Della Valle, M. Simonnet, I. Yamada and J.-J. Delaunay, Applied Physics Letters, 2009, 94, 023110-023113. 47. D. Hou, A. Dev, K. Frank, A. Rosenauer and T. Voss, The Journal of Physical Chemistry C, 2012, 116, 19604-19610. 48. G. Kresse and J. Furthmuller, Physical Review B, 1996, 54, 11169-11186. 49. G. Kresse and J. Furthmuller, Computational Materials Science, 1996, 6, 15-50. 50. G. Kresse, M. Marsman and J. Furthmuller, VASP the GUIDE, http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html, 2014. 51. Wikipedia, Vienna Ab-initio Simulation Package, http://en.wikipedia.org/wiki/Vienna_Ab-initio_Simulation_Package, 2014. 52. M. Marsman, History of VASP, http://cms.mpi.univie.ac.at/vasp/vasp/History_VASP.html, 2011. 53. T.-C. Leung, Lecture Notes of First-principles Computational Material Research Spring School, Taiwan, 2012. 54. S. P. Beckman, J. Han and J. R. Chelikowsky, Physical Review B, 2006, 74, 165314.
摘要: In this thesis, an enhancement of ultra-violet (UV) sensing performance of Mn doped ZnO UV sensors was presented. Two different types of sensors were developed, including single nanowires sensor and nanoforest type sensor. Different fabricating processes of ZnO nanowires such as, vapor-liquid-solid method and low temperature aqueous solution method, were compared and discussed to optimize the photoresponse of Mn doped ZnO sensors. The mechanism, that Mn doping influence to the UV photoresponse of ZnO nanowires, was also suggested. Two methods were used to fabricate pure ZnO and Mn doped ZnO nanowires. In first method, ZnO nanowires were grown on Si(100) substrates with gold catalyze by vapor-liquid-solid method and then processed by ion-implantation to dope Mn. In another method, the reacting solution to growth pure ZnO nanowires by low temperature aqueous solution method containing Hexamethylenetetramine (HMTA, C6H12N4) and Zinc acetate (Zn(CH3COO)). For Mn doping, Manganese(II) chloride (MnCl2) was directly adding into the reacting solution. A series of analysis including FESEM (field emission scanning electron microscopy), EDS (energy dispersive spectroscopy), XRD (X-ray diffraction) and TEM (transmission electron microscopy) were performed to analyze the properties of ZnO nanowires. Results suggest a low temperature aqueous solution method is more suitable for fabricating ZnO nanowires UV sensors. Single ZnO or Mn/ZnO nanowire UV sensor was fabricated by focus ion beam deposition. The sensing abilities of ultra-violet sensors were examined under irradiation of 365 nm and 400 nm ultra-violet lights. The sensor with Mn doped ZnO nanowire showed an enhancement on sensing ability than the sensor with pure ZnO nanowire. Other ZnO and Mn/ZnO nanostructures UV sensors were also fabricated by low temperature aqueous solution method. The nanostructures were found to enhance the photoresponse of ZnO films. A possible mechanism, which related to surface sites of nanowires and desorption of gas molecules, was suggested to explain the results. The mechanism suggested that the Mn atoms near to surface of ZnO nanowires can influence UV photoresponse according to model of oxygen and water molecules desorption and re-adsorption. Nanoforest type UV sensors were fabricated in used of three different types of substrate and were grown by low temperature aqueous solution method. Mn doping level were controlled by adjust concentrations of chemicals in reacting solutions. Nanowires growing on different substrates were found have different morphologies. In compare of three kinds of substrates, substrates type II, which have ~180nm ZnO seed layer deposited by sputter, are found most suitable to fabricate nanoforest type UV sensor. The ZnO or Mn doped ZnO nanowires can grow on the substrates type II vertically. A model was suggested that nanowires forest were playing a role of charges' buffer or reservoir. First principle calculations were performed to understand the properties of Mn doped ZnO nanowires. Results of first principle calculations showed that doped Mn atoms were prefer to stay at shell of ZnO nanowires. Band structures of ZnO and Mn doped ZnO nanowires were also simulated.
URI: http://hdl.handle.net/11455/90537
文章公開時間: 2017-05-06
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.