Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90541
標題: To Study the Characteristics of Fe Oxide(Core)/Au(Shell) Nanoparticles by Ultra-low Field Nuclear Magnetic Resonance
鐵核金殼磁性奈米粒子於超低磁場核磁共振之特性研究
作者: Yao-Wei Yeh
葉曜緯
關鍵字: 鐵核金殼磁性奈米粒子
低磁場核磁共振
超順磁氧化鐵磁性奈米粒子
Fe Oxide(Core)/Au(Shell) Nanoparticle
Low Field NMR
Superparamagnetic iron oxide nanoparticle
引用: [1] Yanhong Xiao Prashant K. Jain, Ronald Walsworth, and Adam E. Cohen, 'Surface Plasmon Resonance Enhanced Magneto-Optics (Supremo): Faraday Rotation Enhancement in Gold-Coated Iron Oxide Nanocrystals', Nano Lett, 9 (2009), 1644-50. [2] F. Mohammad, G. Balaji, A. Weber, R. M. Uppu, and C. S. Kumar, 'Influence of Gold Nanoshell on Hyperthermia of Super Paramagnetic Iron Oxide Nanoparticles (Spions)', J Phys Chem C Nanomater Interfaces, 114 (2010), 19194-201. [3] Dong Yang, Jianzhong Ma, Mingli Peng, Qinlu Zhang, Yanling Luo, Wenli Hui, Tianbo Jin, and Yali Cui, 'Building Nanospr Biosensor Systems Based on Gold Magnetic Composite Nanoparticles', Journal of Nanoscience and Nanotechnology, 13 (2013), 5485-92. [4] E. D. Smolensky, M. C. Neary, Y. Zhou, T. S. Berquo, and V. C. Pierre, 'Fe3o4@Organic@Au: Core-Shell Nanocomposites with High Saturation Magnetisation as Magnetoplasmonic Mri Contrast Agents', Chem Commun (Camb), 47 (2011), 2149-51. [5] C. Hoskins, Y. Min, M. Gueorguieva, C. McDougall, A. Volovick, P. Prentice, Z. Wang, A. Melzer, A. Cuschieri, and L. Wang, 'Hybrid Gold-Iron Oxide Nanoparticles as a Multifunctional Platform for Biomedical Application', J Nanobiotechnology, 10 (2012), 27. [6] I. C. Chiang, and D. H. Chen, 'Structural Characterization and Self-Assembly into Superlattices of Iron Oxide-Gold Core-Shell Nanoparticles Synthesized Via a High-Temperature Organometallic Route', Nanotechnology, 20 (2009), 015602. [7] Song Zhang, Liguang Zou, Dong Zhang, Xin Pang, Hua Yang, and Ying Xu, 'Goldmag Nanoparticles with Core/Shell Structure: Characterization and Application in Mr Molecular Imaging', Journal of Nanoparticle Research, 13 (2011), 3867-76. [8] X. He, F. Liu, L. Liu, T. Duan, H. Zhang, and Z. Wang, 'Lectin-Conjugated Fe2o3@Au Core@Shell Nanoparticles as Dual Mode Contrast Agents for in Vivo Detection of Tumor', Mol Pharm, 11 (2014), 738-45. [9] David A. Fleming Jennifer L. Lyon, Matthew B. Stone, Peter Schiffer, and Mary Elizabeth Williams, 'Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding', Nano Lett, 4 (2004), 719-23. [10] Yanglong Hou Zhichuan Xu, and Shouheng Sun, 'Magnetic Core/Shell Fe3o4/Au and Fe3o4/Au/Ag Nanoparticles with Tunable Plasmonic Properties', Journal of the American Chemical Society, 129 (2007), 8698-99. [11] H. C. Yang, L. L. Chiu, S. H. Liao, H. H. Chen, H. E. Horng, C. W. Liu, C. I. Liu, K. L. Chen, M. J. Chen, and L. M. Wang, 'Relaxation of Biofunctionalized Magnetic Nanoparticles in Ultra-Low Magnetic Fields', Journal of Applied Physics, 113 (2013), 043911. [12] S. H. Liao, H. C. Yang, H. E. Horng, J. J. Chieh, K. L. Chen, H. H. Chen, J. Y. Chen, C. I. Liu, C. W. Liu, and L. M. Wang, 'Time-Dependent Phase Lag of Biofunctionalized Magnetic Nanoparticles Conjugated with Biotargets Studied with Alternating Current Magnetic Susceptometor for Liquid Phase Immunoassays', Applied Physics Letters, 103 (2013), 243703. [13] K. W. Huang, S. Y. Yang, H. E. Horng, J. J. Chieh, H. H. Chen, C. C. Wu, J. H. Chen, I. T. Lin, C. C. Yang, and H. C. Yang, 'Time-Evolution Contrast of Target Mri Using High-Stability Antibody Functionalized Magnetic Nanoparticles: An Animal Model', Journal of Nanomaterials, 2014 (2014), 1-7. [14] R. Hong, M. J. Cima, R. Weissleder, and L. Josephson, 'Magnetic Microparticle Aggregation for Viscosity Determination by Mr', Magn Reson Med, 59 (2008), 515-20. [15] Z. Zhao, Z. Zhou, J. Bao, Z. Wang, J. Hu, X. Chi, K. Ni, R. Wang, X. Chen, Z. Chen, and J. Gao, 'Octapod Iron Oxide Nanoparticles as High-Performance T2 Contrast Agents for Magnetic Resonance Imaging', Nat Commun, 4 (2013), 2266. [16] N. Arsalani, H. Fattahi, S. Laurent, C. Burtea, L. Vander Elst, and R. N. Muller, 'Polyglycerol-Grafted Superparamagnetic Iron Oxide Nanoparticles: Highly Efficient Mri Contrast Agent for Liver and Kidney Imaging and Potential Scaffold for Cellular and Molecular Imaging', Contrast Media Mol Imaging, 7 (2012), 185-94. [17] S. Tong, S. Hou, Z. Zheng, J. Zhou, and G. Bao, 'Coating Optimization of Superparamagnetic Iron Oxide Nanoparticles for High T2 Relaxivity', Nano Lett, 10 (2010), 4607-13. [18] N. Arsalani H. Fattahi, S. Laurent, S. Boutry, L. Vander Elst, R. N. Muller, 'Fluorescently-Labelled Iron Oxide Nanoparticles as Bimodal Contrast Agents for Magnetic Resonance and Optical Imaging', ICNS4 (2012), 1419-21. [19] Sung-Jin Cho, Benjamin R. Jarrett, Angelique Y. Louie, and Susan M. Kauzlarich, 'Gold-Coated Iron Nanoparticles: A Novel Magnetic Resonance Agent for T1 and T2 Weighted Imaging', Nanotechnology, 17 (2006), 640-44. [20] Kenneth N. Raymond and Vale ́rie C. Pierre, 'Next Generation, High Relaxivity Gadolinium Mri Agents', Bioconjugate Chem, 16 (2005), 3-8. [21] ANAND M. GOLE CATHERINE J. MURPHY, PATRICK N. SISCO JOHN W. STONE, and EDIE C. GOLDSMITH ALAALDIN M. ALKILANY, AND SARAH C. BAXTER, 'Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging', ACCOUNTS OF CHEMICAL RESEARCH, 41 (2008), 1721-30. [22] T. Li, B. Albee, M. Alemayehu, R. Diaz, L. Ingham, S. Kamal, M. Rodriguez, and S. W. Bishnoi, 'Comparative Toxicity Study of Ag, Au, and Ag-Au Bimetallic Nanoparticles on Daphnia Magna', Anal Bioanal Chem, 398 (2010), 689-700. [23] A. Ben-Amar Baranga S. Appelt, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, 'Theory of Spin-Exchange Optical Pumping of 3he and 129xe', Physical Review A, 58 (1998), 1412-39. [24] Y.-Q. Song G. Navon, T. Ro6m, S. Appelt, R. E. Taylor, A. Pines, 'Enhancement of Solution Nmr and Mri with Laser-Polarized Xenon', Science, 271 (1996), 1848-51. [25] Shu-Hsien Liao, Herng-Er Horng, Hong-Chang Yang, and Shieh-Yueh Yang, 'Longitudinal Relaxation Time Detection Using a High-Tc Superconductive Quantum Interference Device Magnetometer', Journal of Applied Physics, 102 (2007), 033914. [26] Andrei N Matlashov Vadim S Zotev, Petr L Volegov, Algis V Urbaitis, Michelle A Espy and Robert H Kraus, Jr, 'Squid-Based Instrumentation for Ultra-Low-Field Mri', Supercond. Sci. Technol., 20 (2007), S367–S73. [27] Robert McDermott Andreas H. Trabesinger, Seung Kyun Lee, Michael Muck, John Clarke, and Alexander Pines, 'Squid-Detected Liquid State Nmr in Microtesla Fields', J. Phys. Chem. A, 108 (2003), 957-63. [28] R. McDermott, S. Lee, B. ten Haken, A. H. Trabesinger, A. Pines, and J. Clarke, 'Microtesla Mri with a Superconducting Quantum Interference Device', Proc Natl Acad Sci U S A, 101 (2004), 7857-61. [29] R. McDermott K. Schlenga, John Clarke, R. E. de Souza, A. Wong-Foy, and A. Pines, 'Low-Field Magnetic Resonance Imaging with a High-Tc Dc Superconducting Quantum Interference Device', Applied Physics Letters, 75 (1999), 3695-97. [30] K. Schlengab R.E. de Souzaa, A. Wong-Foy, R. McDermott, A. Pines, and John Clarke, 'Nmr and Mri Obtained with High Transition Temperature Dc Squids', J. Braz. Chem. Soc., 10 (1999), 307-12. [31] J M S Hutchison and D M Bussell H C Seton, 'A 4.2 K Receiver Coil and Squid Amplifier Used to Improve the Snr of Low-Field Magnetic Resonance Images of the Human Arm', Meas. Sci. Technol., 8 (1996), 198-207. [32] Kevin F. King Matt A. Bernstein, and Xiaohong Joe Zhou, Handbook of Mri Pulse Sequences. Vol. 960 (2004). [33] Laurel O Sillerud; Hongyou Fan; Todd Michael Alam; David Price Adams; Andrew F McDowell, Bioagent Detection Using Miniaturized Nmr and Nanoparticle Amplification: Final Ldrd Report (The Office of Scientific and Technical Information, U.S. Dept. of Energy, 2006). [34] R. Georgiadis K.A. Peterlinz, 'Two-Color Approach for Determination of Thickness and Dielectric Constant of Thin Films Using Surface Plasmon Resonance Spectroscopy', Optics Communications, 130 (1996), 260-66. [35] Anatoly V. Zayats, Igor I. Smolyaninov, and Alexei A. Maradudin, 'Nano-Optics of Surface Plasmon Polaritons', Physics Reports, 408 (2005), 131-314. [36] Subhash Risbud Young Soo Kang, John F. Rabolt, and Pieter Stroeve, 'Synthesis and Characterization of Nanometer-Size Fe3o4 and Γ-Fe2o3 Particles', Chem Mater, 8 (1996), 2209-11. [37] 林麗娟, 'X 光繞射原理及其應用', 工業材料雜誌 1994, pp. 100-09. [38] 李珠, '感應耦合電漿質譜儀技術及其在材料分析上的應用', 工業材料雜誌 2002, pp. 87-93. [39] Hsin-Hsien Chen, Hong-Chang Yang, Herng-Er Horng, Jong-Kai Hsiao, Shieh-Yueh Yang, Shu-Hsien Liao, and Ming-Jye Chen, 'Relaxation Rates of Protons in Gadolinium Chelates Detected with a High-T[Sub C] Superconducting Quantum Interference Device in Microtesla Magnetic Fields', Journal of Applied Physics, 108 (2010), 093904. [40] James Wesley Carter, 'Mri: The Basics, 3rd Ed.Mri: The Basics, 3rd Ed.By Ray Hashman Hashemi , William G. Bradley , and Christopher J. Lasanti . Philadelphia, Pa : Lippincott, Williams & Wilkins , 400 Pp., 2010 . $66.95 Paperback (Isbn: 978-1608311156 )', American Journal of Roentgenology, 197 (2011), W361-W61.
摘要: 本研究使用之鐵核金殼磁性奈米粒子(γ-Fe2O3(Core)/Au(Shell))以反膠束法合成,以三氧化二鐵核心及金殼構成。並使用以下技術分析鐵核金殼磁性奈米粒子的特性,如穿透光譜(Spectrometer)判斷合成前後之樣品含有金的成分、X光繞射分析(X-ray Diffraction, XRD)分析樣品所含成分為三氧化二鐵和金、磁滯曲線(Magnetic Hysteresis Curve, M-H Curve)可知所合成樣品的飽和磁化率為4.5×10−4 emu/g、雷射粒徑分析儀(Laser Diffraction Particle Size Analyzer, DLS)測定其平均粒徑為 28 ± 6.26 nm、穿透式電子顯微鏡(Transmission Electron Microscope, TEM)觀察其表面形貌以及感應耦合電漿質譜分析(Inductivity Coupled Plasma-Mass Spectrometer, ICP-MS)樣品所含γ-Fe2O3為0.1 mM、金為0.138 mM。   超順磁氧化鐵磁性奈米粒子(Fe3O4)已被應用於高磁場核磁共振(主磁場 > 1.5 T)的T2對比劑,因為磁特性使其在T1的對比效果不顯著,其r2/r1比值為422,而鐵核金殼磁性奈米粒子為γ-Fe2O3磁性奈米粒子外圍包覆一層金膜,即可提升其在T1的對比效果,其r2/r1比值為20.07。並隨著主磁場降低至100 μT,鐵核金殼磁性奈米粒子的r2/r1比值更降低為0.43,可見其於低磁場下是更顯著的T1對比劑。而鐵核金殼磁性奈米粒子在低磁場時以532 nm 綠光雷射誘發局部表面電漿共振效應(Localized Surface Plasma Resonance, LSPR),影響局部粒子表面磁場改變,使T1時間縮短並提升r1的現象,未來可結合自體螢光之抗體並應用於生醫檢測相關研究。
The γ-Fe2O3(Core)/Au(Shell) magnetic nanoparticles have been synthesized by a reverse micelle method. The nanoparticles composed byγ-Fe2O3 and Au, as determined by spectrometer, x-ray diffraction (XRD) and transmission electron microscope (TEM). The average nanoparticle size is 28 ± 6.26 nm, as determined by laser diffraction particle size analyzer (DLS). The molarity of γ-Fe2O3 and Au is 0.1 mM and 0.138 mM in freshly synthesized γ-Fe2O3(Core)/Au(Shell) magnetic nanoparticles, as determined by inductivity coupled plasma-mass spectrometer (ICP-MS). And the saturation magnetization is 4.5 emu g-1, as determined by superconducting quantum interference device (SQUID).   Superparamagnetic iron oxide nanoparticles (Fe3O4) is used as T2 contrast agents in high field nuclear magnetic resonance (NMR) which the main magnetic field is over 1.5 T. The r2/r1 ratio of Fe3O4 is 422 in 7 T NMR. But r2/r1 ratio of γ-Fe2O3(Core)/Au(Shell) magnetic nanoparticles is 20.07. It may potentially be used as T1 agents at 7 T NMR. With the decrease of the main magnetic field to 100 μT, the r2/r1 ratio is also decreased to 0.43. It has stronger T1 contrast effect in low field NMR. Because of the Au shell, it will induce localized surface plasma resonance (LSPR) when using 532 nm green laser irradiate nanoparticles. LSPR caused the local magnetic field changing and promote the T1 contrast effect. It is expected to be applied to biomedical detection.
URI: http://hdl.handle.net/11455/90541
文章公開時間: 2018-08-20
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.