Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90543
標題: Ambipolar germanium nanowire transistors and their nonvolatile memory applications
雙極性鍺奈米線場效電晶體及其記憶體效應應用
作者: Chao-Fu Chen
陳昭福
關鍵字: 鍺奈米線
場效電晶體
蕭特基接觸
熱離子發射
Germanium nanowries
Field effect transistor
Schottky contact
Thermionic emission
引用: [1] A. R. Smith, K.-J. Chao, Q. Niu, and C.-K. Shih, Science 273, 226 (1996). [2] S. Iijima, Nature, 354, 56 (1991). [3] Cor Claeys, Eddy Simoen, Germanium-Based Technologies From Materials to Devices, Elsevier, Netherlands, (2007) [4] J. R. Heath, F. K. LeGoues, Chem. Phys. Lett. 208, 263 (1993). [5] Alfredo M. Morales and Charles M. Lieber, Science 279, 9 (1998) [6] Y. Y. Wu, P. D. Yang, Chem. Mater. 12, 605-607 (2000). [7] D. W. Wang, H. J. Dai, Angew. Chem. 114, 24 (2002). [8] L. W. Lin, Y. H. Tang, C. S. Chen and H. F. Xu, CrystEngComm. 12, 2975-2981 (2010) [9] Y. D. Ko, J. G. Kang, G. H. Lee, J. G. Park, K. S. Park, Y. H. Jin, D. W. Kim, Nanoscale 3, 3371 (2011). [10] J. S. Tang, C. Y. Wang, F. I. Xiu, M. R. Lang, L. W. Chu, C. J. Tsai, Y. L. Chueh, L. J. Chen, K. L. Wang, ACS Nano. 5, 7 (2011). [11] D. W. Wang, Q. Wang, Ali Javey, Ryan Tu, H. J. Dai, Hyoungsub Kim, Paul C. McIntyre, Tejas Krishnamohan, Krishna C. Saraswat, Appl. Phys. Lett. 83, 12 (2003). [12] Boris Polyakov, Brian Daly, Juris Prikulis, Vaclovas Lisauskas, Bonifacas Vengalis, Michael A. Morris, Justin D. Holmes, Donats Erts, Adv. Mater. 18, 1812-1816 (2006) [13] Y. H. Ahn , Jiwoong Park, Appl. Phys. Lett. 91, 162102 (2007). [14] C. J. Kim, H. S. Lee, Y. J. Cho, Kibum Kang, M. H. Jo, Nano Lett. 10, 2043-2048 (2010) [15] Jie Xiang, Wei Lu, Y. J. Hu, Yue Wu, Hao Yan, Charles M. Lieber, NATURE 441, 489-493 (2006). [16] Li Zhang, Ryan Tu, Hongjie Dai, Nano Lett. 26, 12 (2006). [17] Wei Lu, Jie Xiang, Brian P. Timko, Yue Wu, Charles M. Lieber, PNAS. 102, 29 (2005). [18] B. M. Nguyen, Yuan Taur, S. Tom Picraux, Shadi A. Dayeh, Nano Lett. 14, 585-591 (2014). [19] T. Burchhart, A. Lugstein, Y. J. Hyun, G. Hochleitner, E. Bertagnolli, Nano Lett. 9, 11 (2009). [20] Jianshi Tang, C. Y. Wang, M. H. Hung, X. W. Jiang, L. T. Chang, Liang He, P. H. Liu, H. J. Yang, H. Y0 Tuan, L. J. Chen, Kang L. Wang, ACS Nano. 6, 6 (2012). [21] D. A. Neamen, Semiconductor Physics & Devices, 3rd, McGraw-Hill, University of New Mexico, (2003). [22] D. A. Neamen/著, 楊賜麟/譯, 半導體物理與元件, 滄海書局, 台中 (2010). [23] S. M. Sze, Semiconductor Devices Physics and Technology 2nd, John Wlley & Sons, INC. (2001). [24] H. Julian Goldsmid, Introduction to Thermoelectricity, Springer, Australia (2009). [25] S. C. Hsu, C. L. Hsin, C. W. Huang, S. Y. Yu, C. W. Wang, C. M. Lu, K. C. Lu, W. W. Wu, CrystEngComm. 14, 4570–4574 (2012). [26] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, Ph. Avouris, Phys. Rev. Lett. 87, 25 (2001). [27] Y. M. Lin, Joerg Appenzeller, Phaedon Avouris, Nano Lett. 4, 5 (2004). [28] C. W. Zhou, J. Kong, H. Jie Dai, Phys. Rev. Lett. 84, 24 (2000). [29] S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, Ph. Avouris, Phys. Rev. Lett. 89, 10. (2002). [30] L. Y. Su, H. Y. Lin, H. K. Lin, S. L. Wang, L. H. Peng, J. J. Huang, IEEE Electron Dev. Lett. 32, 9 (2011). [31] Y. Shao, J. W Yoon, Hyeongnam Kim, Takhee Lee, and Wu Lu, IEEE T Electron Dev. 61, 2 (2014). [32] B. M. Nguyen, Yuan Taur, S. Tom Picraux, Shadi A. Dayeh, Nano Lett. 14, 585-591 (2014). [33] S. M. Kim, Patrick D. Carpenter, Rand K. Jean, H. T. Chen, C. Wu Zhou, S. H Ju, David B. Janes, ACS Nano. 6, 8 (2012). [34] X. J. She, C. H. Liu, J. Y. Zhang, Xu Gao, S. D. Wang, Appl. Phys. Lett. 102, 053303 (2013). [35] W. H. Chen, C. H. Liu, Q. L. Li, Q. J. Sun, J. Liu,Xu Gao, X. Sun, S. D. Wang, Nature Nanotech. 25, 075201 (2014). [36] X. J. She, C. H. Liu, Q. J. Sun, Xu Gao, S. D. Wang, ORG Electron, 13, 1908-1915 (2012). [37] H. S. Lee, S. W. Min, M. K. Park, Y. T. Lee, P. J. Jeon, J. H. Kim, S. Ryu, Seongil Im, SMALL. 8, 20 (2012). [38] Xu Gao, X. J. She, C. H. Liu, Q. J. Sun, J. Liu, S D. Wang, Appl. Phys. Lett. 102, 023303 (2013). [39] X. J. She, J .Liu, J. Y. Zhang, Xu Gao, S. D. Wang, Appl. Phys. Lett. 103, 143302 (2013).
摘要: 被喻為下一世代的半導體材料鍺相較於矽有更多優勢,其電子遷移率較矽高,即鍺的電晶體所需的操作電壓較低,而達到節能之功效。又鍺(24.3 nm)相較於矽(4.9 nm)有較大的波爾半徑(Bohr radius),所以較易引發量子局限效應(Quantum confinement effect),會影響磊晶的成長促使長出邊緣陡峭、表面平坦、理想之厚度等優點。 本實驗利用電子束微影的方式,將平均直徑為70奈米之圓柱型單晶鍺奈米線,製成多組兩點量測之單根鍺奈米線場效電晶體元件,量測其變溫之電流-電壓特性並分析實驗結果。再者一般單晶鍺奈米線,因為其表面氧化物之缺陷,造成鍺是P型半導體的主因,但本研究成功製作出文獻上第一個雙極性鍺奈米線場效電晶體,並對其電子傳輸現象進行探討,推測元件之奈米接點由蕭特基接點構成,且主導了元件的電性行為,並針對其計算出來的位障高度,由窄能帶模型對雙極性現象提出解釋,最後從其伴隨產生的遲滯現象應用於記憶體效應。
Germanium (Ge) has recently re-gained significant amount of interests in the semiconductor research and industrial community due to its great potential and distinct characteristics in nature. High carrier mobility makes germanium become much better channel material for developing high-performance field effect transistors (FETs). Besides, its Bohr radius of 24.3 nm is much larger than that of Si (4.9 nm), which implies that quantum confinement effects will be more essential in further nanoelectronics. Herein, Ge nanowries (NWs) with an average diameter of 70 nm were investigated. Standard electron-beam lithography and thermal evaporation were used to fabricate Ge NW FETs. To improve electrical contacts between Ge NW and Cu electrodes, the as-made FETs were suffered from a post-annealing process at 150 OC for 30 mins in high vacuum. Surprisingly, the ambiopolar charge transport has been observed in the Ge NW FETs for the first time. Such an ambipolarity can be mainly ascribed to the formation of Schottaky barriers in both NW-electrode contacts. Besides, a non-ignored hysteresis loop with a memory windows up to 70 V has been observed in transfer characteristics and then Ge-NWs-based nonvolatile memories have been realized.
URI: http://hdl.handle.net/11455/90543
文章公開時間: 2018-08-12
Appears in Collections:物理學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.