Please use this identifier to cite or link to this item:
標題: Amorphous Indium-Gallium-Zinc Oxide Film Ultraviolet Sensor
作者: Kuang-Lu Huang
關鍵字: 銦鎵鋅氧
引用: [1] University Of Cambridge in Centre for Atmospheric Science <>. [2] United States Environmental Protection Agency in Ozone Layer Protection <>. [3] Dobson, R., Ozone depletion will bring big rise in number of cataracts, British Medical Journal 331 1292-1295 (2005). [4] 'chlorofluorocarbons.' The Columbia Encyclopedia, 6th ed.. 2014. Jul. 2015<>. [5] F. S. Rowland, C. J. Cleveland, Stratospheric ozone depletion by chlorofluorocarbons (Nobel Lecture). In: Cleveland, J. Cutler (Ed.), Encyclopedia of Earth. Environmental Information Coalition, National Council for Science and the Environment, D. C. Washington. [6] Space Environment Technologies in ISO solar irradiance <>. [7] Kyung-Sook Hyun, Chan-Yong Park, Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure, Journal of Applied Phy. 81 974 (1997). [8] G. A. M. Hurkx, H. C. de Graaff, W. J. Kloosterman, and M. P. G. Kunvers, A New Analytical Diode Model Including Tunneling and Avalanche Breakdown, IEEE Transactions on Electron Devices 39 No. 9 (1992). [9] Yu-Ren Li, Chung-Yun Wan, Chia-Tsung Chang, Wan-Lin Tsai, Yu-Chih Huang, Kuang-Yu Wang, Po-Yu Yang, Huang-Chung Cheng, Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure, 3rd IEEE International Symposium on Next-Generation Electronics 118 48-54 (2015) ,(ISNE 2014). [10] Y. F. Gu, X. M. Li, J. L. Zhao, W. D. Yu, X. D. Gao, C. Yang, Visible-blind ultra-violet detector based on n-ZnO/p-Si heterojunction fabricated by plasma-assisted pulsed laser deposition, Solid State Communications 143 421-424 (2007). [11] M. H. Mamat, M. F. Malek, N. N. Hafizah, Z. Khusaimi, M. Z. Musa, M. Rusop, Fabrication of an ultraviolet photoconductive sensor using novel nanostructured, nanohole-enhanced, aligned aluminium-doped zinc oxide nanorod arrays at low immersion times, Sensors and Actuators B 195 609-622 (2014). [12] T Ghosh and D Basak, Highly efficient ultraviolet photodetection in nanocolumnar RF sputtered ZnO films: a comparison between sputtered, sol-gel and aqueous chemically grown nanostructures, Nanotechnology, 21 375202 (2010). [13] M. Dutta, S. Mridha, D. Basak, Effect of sol concentration on the properties of ZnO thin films prepared by sol-gel technique, Applied Surface Science 254 2743-2747 (2008). [14] R. S. Aga Jr., D. Jowhar., A. Ueda, Z. Pan, W. E. Collins, R. Mu, K. D. Singer, and J. Shen, Enhanced photoresponse in Zno nanowires decorated with CdTe quantum dot, Applied Physics Letters 91 2322108 (2007) [15] Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano, and Hideo Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature 432 488-492 (2004). [16] C. Chen, K Abe, T. C. Fung, H. Kumomi, and J. Kanicki, Amorphous In-Ga-Zn-O thin transistor current-scaling pixel electrode circuit for active-matrix organic light-emitting displays, Japanese Journal of Applied Physics, vol. 48, p. 03B025, 2009. [17] T. C. Fung, C. S. Chuang, K. Nomura, H. P. David Shieh, H. Hosono, and J. Kanicki, Photofield-Effect in Amorphous In-Ga-Zn-O (a-IGZO) Thin-Film Transistors, Journal of Information Display, vol. 9, no. 4, 2008 [18] Sedra, Smith, Microelectronic Circuits 6th. [19] R. S. Chen, W. C. Wang, M. L. Lu, Y. F. Chen, H. C. Lin, K. H. Chen, and L. C. Chen, Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires, nanoscale 5 6867-6873 (2013) [20] Haifeng Pu, Qianfei Zhou, Lan Yue, Qun Zhang, Investigation of oxygen plasma treatment on the device performance of solution-processed a-IGZO thin film transistors, Investigation of oxygen plasma treatment on the device performance of solution-processed a-IGZO thin film transistors, Applied Surface Science, vol. 283, p. 722-726, 2013. [21] Seungjun Lee, Seokhwan Bang, Joohyun Park, Soyeon Park, Wooho Jeong, and Hyeongtag Jeon, The effect of oxygen remote plasma treatment on ZnO TFTs fabricated by atomic layer deposition, Phys. Statis Solidi A, vol. 207, No. 8, p. 1845-1849, 2010. [22] 江國禎, 非晶銦鎵鋅氧薄膜臭氧氣體感測器, 國立中興大學奈米所 (2014)
摘要: 本研究我們利用銦鎵鋅氧(indium gallium zinc oxide,IGZO0)薄膜做為光感測器,因為當IGZO薄膜吸收紫外光會產生電子電洞解離,因此電性會有所改變,觀察電性的變化以達到做為光感測的目的。一開始先討論不同膜厚條件,當膜厚在約115 nm時,有最大的轉換效率(Efficiency,η)約23924( 使用的紫外光波長為365 nm強度1710.2 μW/〖cm〗^2),且具有重複性與低感測極限,在紫外光強度18.6 μW/〖cm〗^2時,轉換效率也有850。   針對轉換效率(η)、響應時間(T_(90 res))、響應時間常數(τ_res)進行分析,在IGZO薄膜光感測器的膜厚35 nm~115 nm之間皆能有效的感測紫外光,其中以膜厚115 nm特性最佳。
In our research, a light sensor was developed by using indium gallium zinc oxide thin films. When IGZO thin films absorbed UV light, the dissociation of electron-hole pairs in the films occurred. This leaded to the change of the electrical property of the films. So the purpose of light detection could be achieved by measuring the electrical property of the films. We first discussed the influence of different thickness of the films. When the thickness of the film was 115 nm, there was the highest conversion efficiency (Efficiency, η) which was about 23924 irradiated under 365 nm UV light with intensity of 1710.2 μW/〖cm〗^2. The response of the film was repeatable. The lower limit of UV light detection of the film was 18.6 μW/〖cm〗^2 with conversion efficiency of 850. In our work, conversion efficiency (η) 、response time(T_(90 res))、and response time constant (τ_res) of IGZO thin films were analyzed. Light sensor which made of the IGZO thin film of which the thickness is between 35 nm and 115 nm could detect UV light effectively, and the property of 115 nm-thick IGZO thin film was the best among others.
文章公開時間: 2018-08-12
Appears in Collections:物理學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.