Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90552
DC FieldValueLanguage
dc.contributorJing-Fang Huangen_US
dc.contributor黃景帆zh_TW
dc.contributor.author陳曉華zh_TW
dc.contributor.authorHsiao-Hua Chenen_US
dc.contributor.other化學系所zh_TW
dc.date2014zh_TW
dc.date.accessioned2015-12-10T02:47:48Z-
dc.identifier.citation1. J.H. Duffus, Pure Appl.Chem., 74 (2002) 793 2. William B. Herring, B. S. Leavell, L. M. Paixao, John H. Yoe, American Journal of Clinical Ntrition, 8 (1960) 846 3. O. Simsek, R. Gultekin, O.Oksuz, S. kurultay. Nahrung, Food 44 (2000) 360 4. Duruibe, J.O., Ogwuegbu, M.O.C., Egwurugwu, J.N., International J. Physical science, 2 (2007) 112 5. Badal Kumar Mandal, Kazuo T. Suzuki, Talanta, 58 (2002) 201 6. Uttam K. Chowdhury, Bhajan K. Biswas, Tarit Roy Chowdhury, GautamSamanta, Badal K. Mandal, Gautam C. Basu, Chitta R. Chanda, Dilip Lodh, Khitish C. Saha, Subhas K. Mukherjee, Sibtosh Roy, Saiful Kabir, Quazi Quamruzzaman, Dipankar Chakraborti, Environ Health Perspect, 108 (2000) 393 7. D.E. Mays, Abul Hussam, Anal. Chim. Acta., 646 (2009) 6 8. C.K. Jain, I. Ali, Wat. Res., 34 (2000) 4304 9. J-F Huang, H-H Chen, Talanta, 116 (2013) 852 10. D.Q. Hung, O. Nedrassova, R.G. Compton, Talanta 64 (2004) 269 11. M. Leermakers, W. Baeyens, M. De Gieter, B. Smedts, C. Meert, H.C. De Bisschop, R. Morabito, Quevauviller, TrAC, 25 (2006) 1 12. Pascal Salaun, Britta Planer-Friedrich, Constant M.G. van den berg, Anal. Chim. Acta, 585 (2007) 312 13. Waler Holak, Anal. Chem., 41 (1969) 1712 14. Peter D. Wentzell, Nils G. Sundin and Cristel Hogeboom, Analyst, 191 (1994) 1403 15. Alan G. Howard, J. Anal. At. Spectrom., 12 (1997) 267 16. Adrian A. Ammann, J. Mass Spectrom., 42 (2007) 419 17. Katsunori Anezaki, Isohi Nukatsuka, Kunio Ohzeki, J. Anal. At. Spectrom. 16 (2001) 12. 18. M. M Kershisnik, Ramaswami Kalamegham, K. Owen Ash, David E. Nixon, Edward R. Ashwood, Clin. Chem., 38 (1992) 2197. 19. A. Mardegan, P. Scopece, F. Lamberti, M. Meneghetti, L. M. Moretto, P.Ugo, Electroanalysis, 24 (2012) 798 20. J. Gong, T. Zhou, D. Song, L. Zhang, X. Hu, Anal. Chem., 82 (2010) 567 21. G. Hanrahan, D. G. Patila, J. Wang, J. Environ. Monit., 6 (2004) 657 22. Joseph Wang, Analytical Electrochemistry 2nd edition, p62 23. Joseph Wang, Analytical Electrochemistry 2nd edition, p75 24. G?nter Henze, Introduction to Introduction to Polarography and Voltammetry, p19 25. Abul Hussam and J. F. Coetzee ,Anal, Chem., 57 (1985) 581 26. Md. Motahar Hossain, Md. Mominul Islarn, Sara Ferdousi, Takeyoshi Okajima, Takeo Ohsaka, Electroanalysis, 20 (2008) 2435 27. Bikash Kumar Jena, C. Rena Raj, Anal. Chem., 80 (2008) 4836 28. Shaojun Guoa, Erkang Wanga, Nano today, 6 (2011) 240 29. Shaojun Guo, Erkang Wang, Anal. Chim. Acta., 598 (2007) 181 30. Xuan Dai, Olga Nekrassova, Michael E. Hyde, Richard G. Compton, Anal. Chem., 76 (2004) 5924 31. Skoog, Fundamental Analytical chemistry 9th edition, p414-418 32. Kristoff Gibbon-Walsha, Pascal Sala?na, M. Kalle Uroicb, Joerg Feldmannb, John M. McArthurc, Constant M.G. van den Berg, Talanta, 85 (2011) 1404 33. Mohamed Khairy, Dimitrios K. Kampouris, Rashid O. Kadara, Craig E. Banks, Electroanalysis, 22 (2010) 2496 34. Xuan Dai and Richard G. Compton, Analyst, 131 (2006) 516–521 35. Mohammad Rezaur Rahman, Takeyoshi Okajima, and Takeo Ohsaka, Anal. Chem., 82 (2010) 9169 36. Allen J. Bard, Larry R. Faulkner, Electrochemical Methods 2nd edition, p294-297 37. Hezard, Teddy, Fajerwerg, Katia, Evrard, David, Colliere, Vincent, Behra, Philippe and Gros, Pierre, Journal of Electroanalytical Chemistry, 664 (2012) 40 38. L. Komsiyska, G. Staikov, Electrochimica Acta, 54 (2008) 168 39. Anthony P. O'Mullane, Samuel J. Ippolito, Ylias M. Sabri, Vipul Bansal, Suresh K. Bhargava, Langmuir, 25 (2009) 3845 40. S. Trasatti, O. A. Petrii, Pure Appl. Chem., 63 (1991) 711 41. Allen J. Bard, Larry R. Faulkner, Electrochemical Methods 2nd edition, p167 42. Dongyue Li, Jing Li, Xiaofang Jia, Yanchao Han, Erkang Wang, Anal. Chim. Acta, 733 (2012) 23 43. Georgina M.S. Alves, Julia M.C.S. Magalhaes, Pascal Salaun, Constant M.G. vn den Berg, Anal. Chim. Acta, 703 (2011) 1 44. Keith B. Male, Sabahudin Hrapovic, Joanne M. Santini, and John H. T. Luong, Anal. Chem., 79 (2007) 2412 45. Yan Liua, Zhao Huanga, Qingji Xiea, Lingen Suna, Tiean Gua, Zou Lia, Lijuan Bua,Shouzhuo Yaoa, Xinman Tub, Xubiao Luob, Shenglian Luo, Sensors and Actuators B, 188 (2013) 894 46. Abdollah Salimi, Michael E. Hyde, Craig E. Banks and Richard G. Compton, Analyst, 129 (2004) 9 47. Yuecun Lan & Hanjin Luo & Xiaohui Ren , Yiping Wang & Yuze Liu, Microchim Acta, 178 (2012) 153 48. Abdollah Salimi, Hussein Mamkhezria, Rahman Hallaj, Saied Soltanian, Sensors and Actuators B, 129 (2008) 246–254 49. Yang Song and Greg M. Swain, Anal. Chem., 79 (2007) 7831-7837 50. Tribidasari A. Ivandini, Rika Sato, Yoshihiro Makide, Akira Fujishima, and Yasuaki Einaga, Anal. Chem., 78 (2006) 6291 51. Andrew O. Simm, Craig E. Banks, Richard G. Compton, Electroanalysis, 17 (2005) 335zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/90552-
dc.description.abstract本研究探討了循環伏安法及定電位法來製備奈米金修飾 玻璃碳電極,比較兩者之間的差異性,製備方式相當簡 單,先將玻璃碳電極在硫酸溶液中以循環伏安法清洗, 再將電極放入含有HAuCl4的溶液中進行循環伏安法或定 電位法,即可在電極表面沉積出奈米金,從結果得知, 循環伏安法得到的奈米金粒子外觀圓滑、尺寸較小,粗 糙度和比表面積均優於定電位法的結果,因此在砷分析 中採用了循環伏安法備製的奈米金修飾電極。砷分析中 常會受到其他金屬離子的干擾,尤其銅離子和汞離子, 在本篇論文中引入了EDTA做為去除干擾的工具,EDTA 雖然無法使Cu(II)和Hg(II)的訊號完全消失,但成功的分 開As(III)和干擾物的訊號。用EDTA輔助奈米金修飾電極 進行微量砷分析,使用方波陽極剝除法可增進偵測效果 ;As(III)檢量線的線性範圍在0.1~17 mgL-1,斜率是0.2018 mA/mgL-1,偵測極限是0.00248 mgL-1。將此實驗方法也可 有效的應用於真實樣品,分別是地下水和自來水兩種。zh_TW
dc.description.tableofcontents謝誌 i 摘要 ii Abstract iii 圖目錄 vii 表目錄 viii 第一章 砷的介紹 1 1-1 重金屬的介紹 1 1-2 砷的危害性 3 1-3 砷的形態介紹 5 1-4 無機砷的分析方法 7 1-5 電化學分析法 10 1-6 砷分析的干擾 16 1-7 EDTA的介紹 18 1-8 實驗目的及動機 20 第二章 原理 22 2-1 電化學方法 22 2-1-1 循環伏安法 22 2-1-2 方波陽極剝除法 23 2-2 奈米金修飾玻璃碳電極 27 2-2-1 奈米金沉積--定電位法 27 2-2-2 奈米金沉積--循環伏安法 .28 2-3 奈米金成長機制 29 2-4 奈米金重量的計算 30 第三章 實驗部分 32 3-1 藥品 32 3-2 實驗器材與儀器設備 33 3-3 實驗步驟 34 3-3-1 電極前處理 34 3-3-2 實驗溶液配製 35 3-3-3 奈米金修飾玻璃碳電極 36 3-3-4 EDTA對分析物的影響 37 3-3-5 As(III)的檢量線製作 38 3-3-6 其他金屬離子的干擾 39 3-3-7 真實樣品 40 3-3-8 電化學液槽 40 第四章 結果與討論 41 4-1 製備奈米金—CV和CA的比較 41 4-1-1 AuNPs的外觀 41 4-1-2 粗糙度及比表面積 47 4-1-3 砷分析的效果 51 4-2 pH的選擇 53 4-3 EDTA的輔助 54 4-3-1 EDTA對Cu(II)、Hg(II)和As(III)的影響 55 4-3-2 有無EDTA的差異 58 4-4 檢量線 59 4-5 其他金屬離子的影響 64 4-6 真實樣品 65 第五章 結論 66 參考資料 67zh_TW
dc.language.isozh_TWzh_TW
dc.rights不同意授權瀏覽/列印電子全文服務zh_TW
dc.subjectGold nanoparticlesen_US
dc.subjectArseniteen_US
dc.subjectEDTAen_US
dc.subject金奈米粒子zh_TW
dc.subject砷離子zh_TW
dc.subjectEDTAzh_TW
dc.titleEDTA assisted selectively electrochemical detection of arsenite on a gold nanoparticles modified glassy carbon electrodeen_US
dc.titleEDTA輔助金奈米粒子修飾玻璃碳電極進行選擇性電化學偵測砷(III)離子zh_TW
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2016-08-31zh_TW
dc.date.openaccess10000-01-01-
Appears in Collections:化學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.