Please use this identifier to cite or link to this item:
標題: Graphene Modified Silica as On-line Solid Phase Extraction Sorbent Material for the Rapid Analysis of Alkylphenol and Bisphenol A in Environmental Water Samples by HPLC-PDA
石墨烯修飾二氧化矽微球應用在線上式固相萃取技術結合 HPLC-PDA 分析河水中的烷基苯酚及雙酚 A
作者: 江怡潔
Yi-Chieh Chiang
關鍵字: Graphene
On-line solid phase extraction
Bisphenol A
雙酚 A
引用: 1. Schecter, A.; Malik, N.; Haffner, D.; Smith, S.; Harris, T. R.; Paepke, O.; Birnbaum,L., Bisphenol A (BPA) in US Food. Environmental science & technology 2010, 44(24), 9425-9430. 2.Jobling, S.; Sumpter, J., Detergent components in sewage effluent are weakly oestrogenic to fish: An in vitro study using rainbow trout hepatocytes. Aquatic toxicology 1993, 27 (3), 361-372. 3.王正雄, 環境荷爾蒙-地球村二十一世紀之熱門課題. 環境檢驗雙月刊2000, 29, 6-14. 4.Crisp, T. M.; Clegg, E. D.; Cooper, R. L.; Wood, W. P.; Anderson, D. G.; Baetcke,K. P.; Hoffmann, J. L.; Morrow, M. S.; Rodier, D. J.; Schaeffer, J. E.,Environmental endocrine disruption: an effects assessment and analysis. 5.Environmental health perspectives 1998, 106 (Suppl 1), 11. Guenther, K.; Kleist, E.; Thiele, B., Estrogen-active nonylphenols from an isomer-specific viewpoint: a systematic numbering system and future trends. Analytical and bioanalytical chemistry 2006, 384 (2), 542-546. 6.Ahel, M.; Giger, W.; Schaffner, C., Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment—II. Occurrence and transformation in rivers. Water Research 1994, 28 (5), 1143-1152. 7.Ball, H. A.; Reinhard, M.; McCarty, P. L., Biotransformation of halogenated and nonhalogenated octylphenol polyethoxylate residues under aerobic and anaerobic conditions. Environmental science & technology 1989, 23 (8), 951-961. 8.Johnson, A. C.; White, C.; Bhardwaj, L.; Jürgens, M. D., Potential for octylphenol to biodegrade in some English rivers. Environmental toxicology and chemistry 2000, 19 (10), 2486-2492. 9.王正雄, 壬基苯酚環境荷爾蒙對環境生態之影響. 環境檢驗通訊雜誌,2000, 39. 10. Staples, C. A.; Dome, P. B.; Klecka, G. M.; Oblock, S. T.; Harris, L. R., A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 1998, 36 (10), 2149-2173. 11. Krishnan, A. V.; Stathis, P.; Permuth, S. F.; Tokes, L.; Feldman, D., Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 1993, 132 (6), 2279-2286. 12. Shiu, W.-Y.; Ma, K.-C.; Varhaníčková, D.; Mackay, D., Chlorophenols and alkylphenols: a review and correlation of environmentally relevant properties and fate in an evaluative environment. Chemosphere 1994, 29 (6), 1155-1224. 13. Servos, M. R., Review of the aquatic toxicity, estrogenic responses and bioaccumulation of alkylphenols and alkylphenol polyethoxylates. Water Quality Research Journal of Canada 1999, 34 (1), 123-177. 14. 丁望賢; 吳建誼, 環境荷爾蒙-壬基苯酚與雙酚 A 在台灣水環境中之分析與流布調查. 環境檢驗雙月刊 2000, 33, 12-21. 15. vom Saal, F. S.; Myers, J. P., Bisphenol A and risk of metabolic disorders. JAMA 2008, 300 (11), 1353-1355. 16. Luque de Castro, M.; Garcıa-Ayuso, L., Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Analytica chimica acta 1998, 369 (1), 1-10. 17. Schmitz-Afonso, I.; Loyo-Rosales, J. E.; de la Paz Aviles, M.; Rattner, B. A.; Rice, C. P., Determination of alkylphenol and alkylphenolethoxylates in biota by liquid chromatography with detection by tandem mass spectrometry and fluorescence spectroscopy. Journal of Chromatography A 2003, 1010 (1), 25-35. 18. Müller, E.; Berger, R.; Blass, E.; Sluyts, D., Liquid–liquid extraction. Ullmann's Encyclopedia of Industrial Chemistry 1985. 19. Helaleh, M. I.; Takabayashi, Y.; Fujii, S.; Korenaga, T., Gas chromatographic–mass spectrometric method for separation and detection of endocrine disruptors from environmental water samples. Analytica chimica acta 2001, 428 (2), 227-234. 20. Smith, E.; Ridgway, I.; Coffey, M., The determination of alkylphenols in aqueous samples from the Forth Estuary by SPE-HPLC-fluorescence. Journal of environmental Monitoring 2001, 3 (6), 616-620. 21. Sanchez-Avila, J.; Bonet, J.; Velasco, G.; Lacorte, S., Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant. The Science of the total environment 2009, 407 (13), 4157-67. 22. Psillakis, E.; Kalogerakis, N., Developments in liquid-phase microextraction. TrAC Trends in Analytical Chemistry 2003, 22 (9), 565-574. 23. Rasmussen, K. E.; Pedersen-Bjergaard, S., Developments in hollow fibre-based, liquid-phase microextraction. TrAC Trends in Analytical Chemistry 2004, 23 (1), 1-10. 24. Xinmei, F.; Shugui, D.; Yu, Z., 1-Butyl-3-methylimidazolium hexafluorophosphate ionic liquid-based liquid–liquid microextraction for the determination of 4-nonylphenol and 4-tert-octylphenol in environmental waters. International Journal of Environmental Analytical Chemistry 2006, 86 (13), 985-993. 25. Richter, B. E.; Ezzell, J. L.; Felix, D.; Roberts, K. A.; Later, D. W., An Accelerated Solvent-Extraction System for the Rapid Preparation of Environmental Organic-Compounds in Soil. Am. Lab. 1995, 27 (4), 24-28. 26. Ferrer, E.; Santoni, E.; Vittori, S.; Font, G.; Mañes, J.; Sagratini, G., Simultaneous determination of bisphenol A, octylphenol, and nonylphenol by pressurised liquid extraction and liquid chromatography–tandem mass spectrometry in powdered milk and infant formulas. Food Chemistry 2011, 126 (1), 360-367. 27. Novoselov, K. S.; Geim, A. K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A., Electric field effect in atomically thin carbon films. science 2004, 306 (5696), 666-669. 28. Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C., Science of fullerenes and carbon nanotubes: their properties and applications. Academic press, 1996. 29. Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C., Solution properties of single-walled carbon nanotubes. Science 1998, 282 (5386), 95-98. 30. Tans, S. J.; Devoret, M. H.; Dai, H.; Thess, A.; Smalley, R. E.; Georliga, L.; Dekker, C., Individual single-wall carbon nanotubes as quantum wires. Nature 1997, 386 (6624), 474-477. 31. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. science 2008, 321 (5887), 385-388. 32. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano letters 2008, 8 (3), 902-907. 33. Bolotin, K. I.; Sikes, K.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H., Ultrahigh electron mobility in suspended graphene. Solid State Communications 2008, 146 (9), 351-355. 34. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Graphene-based ultracapacitors. Nano letters 2008, 8 (10), 3498-3502. 35. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature materials 2007, 6 (3), 183-191. 36. Staudenmaier, L., Method for the preparation of graphitic acid. Ber Dtsch Chem Ges 1898, 31, 1481-1487. 37. Hummers Jr, W. S.; Offeman, R. E., Preparation of graphitic oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339. 38. Brodie, B. C., On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London 1859, 249-259. 39. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I.; Holland, B.; Byrne, M.; Gun'Ko, Y. K., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology 2008, 3 (9), 563-568. 40. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B., High-throughput solution processing of large-scale graphene. Nature nanotechnology 2008, 4 (1), 25-29. 41. Zhang, X.; Chen, S.; Han, Q.; Ding, M., Preparation and retention mechanism study of graphene and graphene oxide bonded silica microspheres as stationary phases for high performance liquid chromatography. Journal of chromatography. A 2013, 1307, 135-43. 42. Walcarius, A.; Etienne, M.; Bessière, J., Rate of access to the binding sites in organically modified silicates. 1. Amorphous silica gels grafted with amine or thiol groups. Chemistry of materials 2002, 14 (6), 2757-2766. 43. Vrancken, K.; Possemiers, K.; Van Der Voort, P.; Vansant, E., Surface modification of silica gels with aminoorganosilanes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1995, 98 (3), 235-241. 44. Waddell, T. G.; Leyden, D. E.; DeBello, M. T., The nature of organosilane to silica-surface bonding. Journal of the American Chemical Society 1981, 103 (18),5303-5307. 45. Fung, Y.; Wong, Y., Self-assembled monolayers as the coating in a quartz piezoelectric crystal immunosensor to detect Salmonella in aqueous solution. Analytical chemistry 2001, 73 (21), 5302-5309. 46. Yu, L.; Li, P.; Zhang, Q.; Zhang, W.; Ding, X.; Wang, X., Graphene oxide: an adsorbent for the extraction and quantification of aflatoxins in peanuts by high-performance liquid chromatography. Journal of chromatography. A 2013, 1318, 27-34. 47. Cross, J., Electrostatics: principles, problems and applications. 1987. 48. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558-1565. 49. Liu, Q.; Shi, J.; Sun, J.; Wang, T.; Zeng, L.; Jiang, G., Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction. Angewandte Chemie 2011, 50 (26), 5913-7. 50. He, H.; Klinowski, J.; Forster, M.; Lerf, A., A new structural model for graphite oxide. Chemical Physics Letters 1998, 287 (1), 53-56. 51. Padilla-Sanchez, J. A.; Plaza-Bolanos, P.; Romero-Gonzalez, R.; Barco-Bonilla, N.; Martinez-Vidal, J. L.; Garrido-Frenich, A., Simultaneous analysis of chlorophenols, alkylphenols, nitrophenols and cresols in wastewater effluents, using solid phase extraction and further determination by gas chromatography-tandem mass spectrometry. Talanta 2011, 85 (5), 2397-404. 52. Liu, J.-f.; Chi, Y.-g.; Jiang, G.-b.; Tai, C.; Peng, J.-f.; Hu, J.-T., Ionic liquid-based liquid-phase microextraction, a new sample enrichment procedure for liquid chromatography. Journal of Chromatography A 2004, 1026 (1), 143-147.
摘要: In this study, graphene modified silica microspheres was applied as a new sorbent material for on-line solid phase extraction (SPE) coupled to high-performance liquid chromatography with photodiode array detection (HPLC-PDA) for the determination of Alkylphenol (APs) and Bisphenol A (BPA) in environmental water samples. In this research, the carboxylic acid groups present on grapheme oxide (GO) were activated with EDC/NHS catalyst for amide bond formation with the silica microspheres. Then, the graphene functionalized silica composite (G@SiO2) was prepared through hydrazine reduction of GO bonded silica (GO@SiO2) composite under microwave irradiation. Surface morphology of the synthesized material was characterized using FT-IR and FE-SEM. In order to achieve the maximum extraction efficiency, various synthesis conditions were optimized including the concentration of EDC/NHS catalyst and the synthesis time; Furthermore, different parameters that affecting the extraction condition such as pH of the sample solution, volume of desorption solvent, loading rate of sample solution and salt effect. Experimental results indicate that 50mM EDC/NHS catalyst in GO solution (0.5 mg/mL), and the addition of 0.5 g of amine-modified silica microspheres under stirring for 12 hours shows the best synthesis results. Under the selected conditions, including 0.6 mL min-1 of loading rate of sample solution at pH 6 with no added of salt, 80μL of Acetonitrile as desorption solvent showed the maximum extraction efficiency for AP and BPA. Under the optimal conditions, the linear ranges were ranged between 0.5-50 ng/mL for AP and BPA in river water. The correlation coefficients were greater than 0.9962. Quantitation limits were lower than 0.26 ng/mL and the detection limits were lower than 0.08 ng/mL. The presented on-line SPE method was applied to the real water analysis and the relative recoveries were ranged from 81.6-101.6% for spiked analytes in river water samples. The experimental results exhibited that the presented method is a simple, rapid, convenient, efficient and eco-friendly sample preparation method for the determination of APs and BPA in environmental samples.
本研究以石墨烯修飾二氧化矽微球作為線上固相萃取吸附材料,結合液相層析儀二極體陣列偵檢器 (HPLC-PDA) 分析水樣中烷基苯酚類化合物與雙酚A的含量。研究中將氧化石墨烯以 EDC/NHS 催化劑先進行活化,再經由醯胺偶合反應與二氧化矽形成化學鍵結,並使用微波輔助將二氧化矽微球表面的氧化石墨烯還原成石墨烯後,充填入固相萃取管柱之中。萃取時利用針式幫浦將水樣品以穩定流速注入固相萃取管中對分析物進行吸附,經過流洗的步驟後再注入萃取溶劑完成脫附,直接由移動相推動進入 HPLC-PDA進行分析。研究中為獲得最佳的萃取效果,對於實驗中可能影響之變因進行探討 如反應中的催化劑濃度與合成時間 在萃取時探討針式幫浦進樣速率、脫附溶劑體積 水樣 pH 值及鹽類添加等影響因子 由實驗結果顯示以 50 mM。EDC/NHS 催化劑濃度先對石墨烯上的羧酸基進行活化,加入胺基修飾的二氧化矽微球,在磁石攪拌及室溫下反應 12 小時,再利用聯胺經以微波輔助還原後可得最佳的合成效果。萃取時,水樣調控在 pH 6 且不添加鹽類下進樣萃取,流洗後注入 80μL 的萃取溶劑進行脫附,對烷基苯酚類化合物及雙酚 A 有最佳的萃取效果。在最佳萃取條件下進行分析,五個分析物之線性範圍為 0.5–50 ng/mL,線性相關係數高於 0.9962 以上,偵測極限介於0.06–0.08 μg/L 之間,RSD 值皆低於 5.3 %。以本方法對台中市某河川之廢水作分析,測得 5.4 ng/mL 的對特辛基苯酚 (t-OP) 、1.9 ng/mL 的辛基苯酚 (n-OP) 及 1.7 ng/mL 的壬基苯酚 (n-NP) ,其回收率介於 81.6-101.6 %。本方法對於河水中烷基苯酚及雙酚 A 進行偵測 大幅減少分析的作業時間,為一簡易、環保、方便、省時及高效率的綠色化學前處理方法。
文章公開時間: 2018-07-15
Appears in Collections:化學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.