Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90564
標題: Determination of Microcystins in Aqueous Samples by Modified Solid-Supported Liquid Extraction combined with Liquid Chromatography-Tandem Mass Spectrometry
自製碟型萃取裝置結合液相層析串聯質譜術於環境水微囊藻毒素分析之研究
作者: 許暢麟
Chang-Lin Hsu
關鍵字: Liquid Chromatography-Tandem Mass Spectrometry
Microcystins
液相層析串聯質譜術
微囊藻毒素
碟型萃取裝置
引用: [1] P. Ferranti, S. Fabbrocino, E. Chiaravalle, M. Bruno, A. Basile, L. Serpe, P. Gallo, Food Res. Int. (2013) 54, 1321-1330 [2] Creating a Cyanotoxin Target List for the Unregulated Contaminant Monitoring Rule (2001), U.S. Environmental Protection Agency [3] R. M. Dawson, Toxicon (1998) 36, 953-962 [4] Cyanobacteria and Cyanotoxins:Information for Drinking Water Systems (2012), U.S. Environmental Protection Agency [5] M. Masango, J. Myburgh , C. Botha , L. Labuschagne , D. Naicker, Water Res. (2008) 42, 3241–3248 [6] K. Ondracek, H. Bandouchova, V. Damkova, K. Hilscherova, J. Kral, J. Osickova, V. Mlcakova, M. Pohanka, H. Skochova, F. Vitula, F. Treml, J. Pikula, Neuroendocrinol. Lett. (2012) 33, 155-160 [7] C. Rivasseau, P. Racaud, A. Deguin, M.-C. Hennion, Environ. Sci. Technol. (1999) 33, 1520–1527 [8] B. S. F. Wong, P. K. S. Lain, L. Xu, Y. Zhang, B. J. Richardson, Chemosphere (1999) 38, 1113-1122 [9] C. Schmidtkunz, H. B. Stich, T. Welsch, J. Liq. Chromatogr. Related Technol. (2009) 32, 801–821 [10] C. Wang, C. Tian, Y. Tian, B. Feng, S. We, Y. Li, X. Wu, B. Xiao, Anal. Methods (2015) 7, 759–765 [11] T. Sano, K. Nohara, F. Shiraishi, K. Kaya, Int. J. Environ. Anal. Chem. (1992) 49, 163-170 [12] X. Xu, R. Yu, L. Wang, S. Wu, Q. Song, Anal. Methods (2013) 5, 1799–1805 [13] A. Mekebri, G. J. Blondina, D. B. Crane, J. Chromatogr. A (2009) 1216, 3147–3155 [14] E. A. Mbukwa, T. A. Msagati, B. B. Mamba, Int. J. Environ. Res. Public Health (2012) 9, 3484-3505 [15] W. M. Draper, D. Xu, P. Behniwal, M. J. McKinney, P. Jayalath, J. S. Dhoot, D. Wijekoon, Anal. Methods (2013) 5, 6796-6806 [16] J. T. Watson, O. D. Sparkman, Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th Edition, John Wiley & Sons (2007) Hoboken, NJ, U.S.A. [17] M. Yamashita, J. B. Fenn, J. Phys. Chem. (1984) 88, 4451–4459 [18] C. Dass, Fundamentals of Contemporary Mass Spectrometry, 1st Edition, John Wiley & Sons (2007) Hoboken, NJ, U.S.A. [19] H-ESI™ Probe Operator's Manual (2005), Thermo Scientific [20] E. de Hoffmann, V. Stroobant, Mass Spectrometry Principles and Applications, 3rd Edition, John Wiley & Sons (2007) Hoboken, NJ, U.S.A. [21] R. A. Yost, C. G. Enke, Anal. Chem. (1979) 51, 1251-1264 [22] J. V. Johnson, R. A. Yost, Anal. Chem. (1990) 62, 2162-2172 [23] R. E. Majors, LC/GC Int. (1991) 4, 10-14 [24] M. A. Al-Ghouti, M. A. M. Khraisheh, S. J. Allen, M. N. Ahmad, J. Environ. Manage. (2003) 69, 229–238 [25] L. E. Antonides, Diatomite (1997), U.S. Geological Survey [26] Y. Al-Degs, M. A. M. Khraisheh, M. F. Tutunji, Water Res. (2001) 35, 3724–3728 [27] Y. Wu, T. Li, L. Yang, Biores. Technol. (2012) 107, 10–18 [28] M.-C. Hennion, J. Chromatogr. A (1999) 856, 3 –54 [29] C. F. Poole, TrAC, Trends Anal. Chem. (2003) 22, 362-373 [30] R. E. Majors, LC/GC Int. (2012) 25, 430-435
摘要: In this study, a rapid, simple, and sensitive analytical method was developed for the determination of the trace microcystins in water samples using solid-supported liquid extraction combined with liquid chromatography-tandem mass spectrometry (SLE-LC-MS/MS). Microcystin-LR (MC-LR), Microcystin-YR (MC-YR), and Microcystin-RR (MC-RR) are separated by C18 column and quantified by selected reaction monitoring (SRM) mode. The optimized extraction conditions for extracting of microcystins from water sample were using 100 mg diatomaceous earth as adsorption sorbent, 15 mL of methanol containing 5% formic acid as desorption solvent. The linearity of the proposed method was 0.5-100 ng/mL with the coefficients of determination (R2) above 0.9933. Limit of quantification (LOQ) and limit of detection (LOD) of three microcystins were between 0.4-0.7 ng/mL and 0.1-0.2 ng/mL, respectively. The intra-day and inter-day precision were between 0.7-5.8% and 5.3-16.7%, respectively. The recovery of the proposed method for analyzing of microcystins in water samples was between 89.5-106.6%. The analyses of trace microcysins in real water samples were also determined, the MC-RR was detected in the aquarium water at the concentration of 3.3 ng/mL. The results demonstrate that the proposed method reduced the sample preparation time from 40 min to 10 min without sacrificing any sensitivity.
本研究利用固相支撐液相萃取法結合液相層析串聯質譜術於水中微量微囊藻毒素之檢測,經由加熱式電噴灑游離法於正離子模式下搭配選擇反應偵測模式,進行最佳化條件及方法確效之探討。實驗結果顯示,取100 mg的矽藻土利用Nylon濾膜與抽氣過濾裝置固定矽藻土,將100 mL添加標準品的超純水通過抽氣過濾裝置,完成後移除底部濾液。以含有5%甲酸之15 mL甲醇溶液,通過抽氣過濾裝置進行脫附,能得到最佳化萃取效率。 在最佳的萃取與偵測條件下,本研究所開發之方法線性範圍為0.5-100 ng/mL,線性相關係數 (R2) 均大於0.9933,定量極限介於0.4至0.7 ng/mL之間,偵測極限介於0.1至0.2 ng/mL之間,同日內精密度與異日間精密度以相對標準偏差表示,分別介於0.7至5.8 %之間與5.3至16.7 %之間,方法回收率則介於89.5至106.6 %。應用所開發之方法於真實水樣之分析,可測得魚缸水樣中含有3.3 ng/mL之MC-RR。此方法具有步驟簡易且大幅縮短大體積量樣品前處理時間,為一個簡單、快速和具有高偵測靈敏度的檢測方法。此方法成功應用於水中微量微囊藻毒素之分析,可做為水中微囊藻毒素檢測方法之參考。
URI: http://hdl.handle.net/11455/90564
文章公開時間: 10000-01-01
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.