請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/90572
標題: The Application of Ultrasonic Polishing Technique to Develop Versatile and Disposable Screen-printed Carbon Electrodes
超音波拋光技術於拋棄式網版印刷碳電極之研發與應用
作者: 蘇雅鈴
Ya-Ling Su
關鍵字: Screen-printed carbon electrode
ultrasonic
polishing
網版印刷碳電極
超音波
拋光
引用: [1] Y.-H. Chang, C.-L. Hsu, C.-J. Yuan, S.-F. Tang, H.-J. Chiang, H.-D. Jang, K.-S. Chang, Materials Science and Engineering: C, 31 (2011) 1265. [2] C.A. Marquette, M.F. Lawrence, L.J. Blum, Analytical Chemistry, 78 (2005) 959. [3] J. Castillo, S. Gáspár, S. Leth, M. Niculescu, A. Mortari, I. Bontidean, V. Soukharev, S.A. Dorneanu, A.D. Ryabov, E. Csöregi, Sensors and Actuators B: Chemical, 102 (2004) 179. [4] P. Fanjul-Bolado, P. Queipo, P.J. Lamas-Ardisana, A. Costa-García, Talanta, 74 (2007) 427. [5] P. Akhtar, H.A. Devereaux, A.J. Downard, B. O'Sullivan, K.J. Powell, Analytica Chimica Acta, 381 (1999) 49. [6] H. Wei, J.-J. Sun, Y. Xie, C.-G. Lin, Y.-M. Wang, W.-H. Yin, G.-N. Chen, Analytica Chimica Acta, 588 (2007) 297. [7] J. Wang, B. Tian, Analytical Chemistry, 64 (1992) 1706. [8] C.A. Marquette, M.F. Lawrence, L.J. Blum, Analytical Chemistry, 78 (2006) 959. [9] R. Ojani, J.-B. Raoof, A.A. Maleki, S. Safshekan, Chinese Journal of Catalysis, 35 (2014) 423. [10] Y.-L. Su, C.-Y. Tai, J.-M. Zen, Electroanalysis, 25 (2013) 2539. [11] F. Gao, X. Cai, X. Wang, C. Gao, S. Liu, F. Gao, Q. Wang, Sensors and Actuators B: Chemical, 186 (2013) 380. [12] Y. Yuan, M. Gao, G. Liu, Y. Chai, S. Wei, R. Yuan, Analytica Chimica Acta, 811 (2014) 23. [13] Y. Li, S. Feng, S. Li, Y. Zhang, Y. Zhong, Sensors and Actuators B: Chemical, 190 (2014) 999. [14] X. Wang, M. Wu, H. Li, Q. Wang, P. He, Y. Fang, Sensors and Actuators B: Chemical, 192 (2014) 452. [15] W. Gao, W.W. Tjiu, J. Wei, T. Liu, Talanta, 120 (2014) 484. [16] X. Lin, Y. Ni, S. Kokot, Journal of Hazardous Materials, 260 (2013) 508. [17] P. Shi, X. Miao, H. Yao, S. Lin, B. Wei, J. Chen, X. Lin, Y. Tang, Electrochimica Acta, 92 (2013) 341. [18] M. Liu, J. Deng, Q. Chen, Y. Huang, L. Wang, Y. Zhao, Y. Zhang, H. Li, S. Yao, Biosensors and Bioelectronics, 41 (2013) 275. [19] Y. Shih, K.-L. Wu, J.-W. Sue, A.S. Kumar, J.-M. Zen, Journal of Pharmaceutical and Biomedical Analysis, 48 (2008) 1446. [20] N. Belkhir, T. Aliouane, D. Bouzid, Applied Surface Science, 288 (1014) 208. [21] T. Doi, I.D. Marinescu, S. Kurokawa, Advances in CMP Polishing Technologies, William Andrew Publishing, Oxford, 2012, p. 113. [22] P.B. Zantye, A. Kumar, A.K. Sikder, Materials Science and Engineering: R: Reports, 45 (2004) 89. [23] N. Kobayashi, Y. Wu, M. Nomura, T. Sato, Journal of Materials Processing Technology, 201 (2008) 531. [24] B. Ghahramani, Z.Y. Wang, International Journal of Machine Tools and Manufacture, 41 (2001) 1189. [25] M. Bhushan, R. Rouse, J.E. Lukens, Journal of the Electrochemical Society, 142 (1995) 3845. [26] Y.-J. Seo, W.-S. Lee, P. Yeh, Microelectronic Engineering, 75 (2004) 361. [27] Y.-J. Seo, G.-W. Choi, W.-S. Lee, Microelectronic Engineering, 84 (2007) 2896. [28] T. Hoshino, Y. Kurata, Y. Terasaki, K. Susa, Journal of Non-Crystalline Solids, 283 (2001) 129. [29] X.-l. Song, D.-y. Xu, X.-w. Zhang, X.-d. Shi, N. Jiang, G.-z. Qiu, Transactions of Nonferrous Metals Society of China, 18 (2008) 178. [30] S.-W. Park, Y.-J. Seo, W.-S. Lee, Microelectronic Engineering, 85 (2008) 682. [31] 蔡明蒔, 奈米通訊, 第6卷 (1999) 21. [32] Y.L. Wang, T.C. Wang, J. Wu, W.T. Tseng, C.F. Lin, Thin Solid Films, 332 (1998) 385. [33] Y. Huang, X. Lu, G. Pan, B. Lee, J. Luo, Applied Surface Science, 255 (2009) 9100. [34] 導川正憲, 超音波工學理論及實務, 復漢, 台南市, 1988. [35] H. Zarepour, S.H. Yeo, Wear, 288 (2012) 1. [36] A.B.E. Khairy, Wear, 137 (1990) 187. [37] A.J. Bard, L.R. Faulkner, Electrochemical Methods, Wiley, New York, 2001. [38] 胡啟章, 電化學原理與方法, 五南, 臺北市, 2011. [39] J. Wang, Analytical Electrochemistry, Wiley, 1998. [40] W. Geremedhin, M. Amare, S. Admassie, Electrochimica Acta, 87 (2013) 749. [41] U. Jarocka, R. Sawicka, A. Góra-Sochacka, A. Sirko, W. Zagórski-Ostoja, J. Radecki, H. Radecka, Biosensors and Bioelectronics, 55 (2014) 301. [42] S. Dong, T. Kuwana, Journal of The Electrochemical Society, 131 (1984) 813. [43] J. Zak, T. Kuwana, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 150 (1983) 645. [44] V. Ostatná, H. Černocká, K. Kurzątkowska, E. Paleček, Analytica Chimica Acta, 735 (2012) 31. [45] J. Zak, T. Kuwana, Journal of the American Chemical Society, 104 (1982) 5514. [46] G.N. Kamau, W.S. Willis, J.F. Rusling, Analytical Chemistry, 57 (1985) 545. [47] Q. He, S. Yuan, C. Chen, S. Hu, Materials Science and Engineering: C, 23 (2003) 621. [48] J. Kang, Z. Li, X. Lu, Y. Wang, Electrochimica Acta, 50 (2004) 19. [49] Y. Wei, R.-X. Xu, C. Gao, J.-H. Liu, X.-J. Huang, Electrochemistry Communications, 18 (2012) 78. [50] A. Kumar, C.H. Lee, Synthesis and Biomedical Applications of Graphene: Present and Future Trends, 2013. [51] A. Holloway, G. Wildgoose, R. Compton, L. Shao, M.H. Green, Journal of Solid State Electrochemistry, 12 (2008) 1337. [52] J.C. Chen, A.S. Kumar, H.H. Chung, S.H. Chien, M.C. Kuo, J.M. Zen, Sensors and Actuators B: Chemical, 115 (2006) 473. [53] J.-L. Chang, K.-H. Chang, C.-C. Hu, W.-L. Cheng, J.-M. Zen, Electrochemistry Communications, 12 (2010) 596. [54] K.S. Prasad, J.C. Chen, C. Ay, J.M. Zen, Sensors and Actuators B: Chemical, 123 (2007) 715. [55] M.-H. Chiu, W.-C. Wei, J.-M. Zen, Electrochemistry Communications, 13 (2011) 605. [56] P. Chen, R.L. McCreery, Analytical Chemistry, 68 (1996) 3958. [57] A.S. Kumar, S. Sornambikai, P. Gayathri, J.-M. Zen, Journal of Electroanalytical Chemistry, 641 (2010) 131. [58] H. Yin, Q. Zhang, Y. Zhou, Q. Ma, T. liu, L. Zhu, S. Ai, Electrochimica Acta, 56 (2011) 2748. [59] A.J.S. Ahammad, M.M. Rahman, G.-R. Xu, S. Kim, J.-J. Lee, Electrochimica Acta, 56 (2011) 5266. [60] T. Gan, J. Sun, K. Huang, L. Song, Y. Li, Sensors and Actuators B: Chemical, 177 (2013) 412. [61] X. Yuan, D. Yuan, F. Zeng, W. Zou, F. Tzorbatzoglou, P. Tsiakaras, Y. Wang, Applied Catalysis B: Environmental, 129 (2013) 367. [62] C. Bu, X. Liu, Y. Zhang, L. Li, X. Zhou, X. Lu, Colloids and Surfaces B: Biointerfaces, 88 (2011) 292. [63] A.T.E. Vilian, S.-M. Chen, L.-H. Huang, Electrochimica Acta (2014). [64] X. Yue, S. Pang, P. Han, C. Zhang, J. Wang, L. Zhang, Electrochemistry Communications, 34 (2013) 356. [65] Y. Kong, X. Chen, W. Wang, Z. Chen, Analytica Chimica Acta, 688 (2011) 203. [66] E. Bayram, N. Hoda, E. Ayranci, Journal of Hazardous Materials, 168 (2009) 1459. [67] N.A. Martinez, G.A. Messina, F.A. Bertolino, E. Salinas, J. Raba, Sensors and Actuators B: Chemical, 133 (2008) 256. [68] F. Pariente, E. Lorenzo, H.D. Abruna, Analytical Chemistry, 66 (1994) 4337. [69] A.A.J. Torriero, H.D. Piola, N.A. Martíneza, N.V. Panini, J. Raba, J.J. Silber, Talanta, 71 (2007) 1198. [70] A. Salimi, R. Hallaj, Electroanalysis, 16 (2004) 1964. [71] H.R. Zare, N. Nasirizadeh, Electrochimica Acta, 52 (2007) 4153. [72] J.-A. Oh, J.-H. Park, H.-S. Shin, Analytica Chimica Acta, 769 (2013) 79. [73] A.B. Brown, T.L. Gibson, J.C. Baum, T. Ren, T.M. Smith, Sensors and Actuators B: Chemical, 110 (2005) 8. [74] S. Plunkett, M.E. Parrish, K.H. Shafer, J.H. Shorter, D.D. Nelson, M.S. Zahniser, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58 (2002) 2505. [75] M. Sun, L. Bai, D.Q. Liu, Journal of Pharmaceutical and Biomedical Analysis, 49 (2009) 529. [76] S.A.G. Visser, C.J.G.M. Smulders, W.W.F.T. Gladdines, H. Irth, P.H. van der Graaf, M. Danhof, Journal of Chromatography B: Biomedical Sciences and Applications, 745 (2000) 357. [77] S. Baskar, J.-L. Chang, J.-M. Zen, Biosensors and Bioelectronics, 33 (2012) 95. [78] Y. Dilgin, B. Kızılkaya, D.G. Dilgin, H.İ. Gökçel, L. Gorton, Colloids and Surfaces B: Biointerfaces, 102 (2013) 816. [79] R. Devasenathipathy, V. Mani, S.-M. Chen, Talanta, 124 (2014) 43. [80] Y.-C. Chou, C.-Y. Tai, J.-F. Lee, T.-S. Chan, J.-M. Zen, Electrochimica Acta, 104 (2013) 104. [81] M. Abdul Aziz, A.-N. Kawde, Talanta, 115 (2013) 214. [82] M. Mazloum-Ardakani, A. Khoshroo, Electrochimica Acta, 103 (2013) 77. [83] A. Senthil Kumar, P. Barathi, K. Chandrasekara Pillai, Journal of Electroanalytical Chemistry, 654 (2011) 85. [84] G. Wang, C. Zhang, X. He, Z. Li, X. Zhang, L. Wang, B. Fang, Electrochimica Acta, 55 (2010) 7204. [85] C. Zhang, G. Wang, Y. Ji, M. Liu, Y. Feng, Z. Zhang, B. Fang, Sensors and Actuators B: Chemical, 150 (2010) 247. [86] Q. Yi, W. Yu, Journal of Electroanalytical Chemistry, 633 (2009) 159. [87] J. Li, X. Lin, Sensors and Actuators B: Chemical, 126 (2007) 527. [88] L. Rotariu, O.-M. Istrate, C. Bala, Sensors and Actuators B: Chemical, 191 (2014) 491. [89] A. Balamurugan, K.-C. Ho, S.-M. Chen, T.-Y. Huang, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 362 (2010) 1. [90] J. Zhu, X. Chen, W. Yang, Sensors and Actuators B: Chemical, 150 (2010) 564. [91] H. Wu, M. Chen, Y. Fan, F. Elsebaei, Y. Zhu, Talanta, 88 (2012) 222. [92] K. Jiménez-Aliaga, P. Bermejo-Bescós, J. Benedí, S. Martín-Aragón, Life Sciences, 89 (2011) 939. [93] V. Kuntić, N. Pejić, B. Ivković, Z. Vujić, K. Ilić, S. Mićić, V. Vukojević, Journal of Pharmaceutical and Biomedical Analysis, 43 (2007) 718. [94] C.-H. Wang, Y.-X. Wang, H.-J. Liu, Journal of Pharmaceutical Analysis, 1 (2011) 291. [95] A.F.K. Gonçalves, R.B. Friedrich, A.A. Boligon, M. Piana, R.C.R. Beck, M.L. Athayde, Free Radicals and Antioxidants, 2 (2012) 32. [96] Q.-h. Lu, C.-d. Ba, D.-y. Chen, Journal of Pharmaceutical and Biomedical Analysis, 47 (2008) 888. [97] Q. Wang, F. Ding, H. Li, P. He, Y. Fang, Journal of Pharmaceutical and Biomedical Analysis, 30 (2003) 1507. [98] G. Chen, H. Zhang, J. Ye, Analytica Chimica Acta, 423 (2000) 69. [99] S. Yang, G. Li, J. Zhao, H. Zhu, L. Qu, Journal of Electroanalytical Chemistry, 717-718 (2014) 225. [100] W. Sun, X. Wang, H. Zhu, X. Sun, F. Shi, G. Li, Z. Sun, Sensors and Actuators B: Chemical, 178 (2013) 443. [101] P. Deng, Z. Xu, Y. Feng, Journal of Electroanalytical Chemistry, 683 (2012) 47. [102] F. Gao, X. Qi, X. Cai, Q. Wang, F. Gao, W. Sun, Thin Solid Films, 520 (2012) 5064. [103] Z. Zhu, X. Sun, X. Zhuang, Y. Zeng, W. Sun, X. Huang, Thin Solid Films, 519 (2010) 928. [104] X. Liu, L. Li, X. Zhao, X. Lu, Colloids and Surfaces B: Biointerfaces, 81 (2010) 344. [105] T. Zhan, X. Sun, X. Wang, W. Sun, W. Hou, Talanta, 82 (2010) 1853. [106] S. Yang, L. Qu, G. Li, R. Yang, C. Liu, Journal of Electroanalytical Chemistry, 645 (2010) 115. [107] A.C. Franzoi, R.A. Peralta, A. Neves, I.C. Vieira, Talanta, 78 (2009) 221. [108] H. Du, J. Ye, J. Zhang, X. Huang, C. Yu, Electroanalysis, 22 (2010) 2399. [109] V. Arjunan, R. Santhanam, M.K. Marchewka, S. Mohan, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122 (2014) 315. [110] M. Arczewska, D.M. Kamiński, E. Górecka, D. Pociecha, E. Rój, A. Sławińska-Brych, M. Gagoś, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1828 (2013) 213.
摘要: Compared with other analytical methods such as chromatography or mass spectrometry, etc., electrochemical analysis can be used as a rapidly preliminary assay for environmental safety or food safety. Electrochemical methods have attracted more and more attentions recently, because of the advantages of low cost, cheap instrument, simple operation, multiple design, and it could be combined with chemically modified electrodes. Electroanalysis have proved to be significantly advantageous to the detection techniques and biochemical sensors. In this doctoral thesis work, we report a polishing method to tune up screen-printed carbon electrodes (SPCEs) for application in fabricating disposable electrochemical sensors. Simply by ultrasonic polishing a bare SPCE, the surface roughness was drastically smoothed and approaching to commonly used glassy carbon electrode. The first chapter introduces research and development how we combined SPCE with ultrasonic polishing technology. The second chapter describes the experimental condition, equipments and chemicals or reagents in detail. The third chapter explores the physical, chemical and electrochemical properties of SPCE after ultrasonic polishing treatment. The fourth and fifth chapter describes the electrochemical applications of SPCE after polishing treatment. In the fourth chapter, the as-generated micro-morphology on the surface of SPCE after polishing treatment was found to be ideal for the immobilization of catechol to minimize overpotential in the sensitive detection of nicotinamide adenine dinucleotide (NADH) and hydrazine. In the fifth chapter, we report an 'activated' SPCE after ultrasonic polishing treatment prepared for sensitive and selective detection of rutin . The proposed electrode was successfully applied to determine rutin in pharmaceutical products with satisfied result. Since the role of ultrasonic polishing on the SPCE surface is rarely studied, the present study contributes important information applicable to the design of disposable electrochemical sensors. The developed sensor was successfully examined for real sample analysis in pharmaceutical products and revealed stable and reliable recovery data.
電化學分析因其具有價格低廉、操作簡易、攜帶方便、可拋棄性、能多重設計或化學修飾的網版印刷電極結合,可研發出更多種類的檢測技術與生化感測器。相較於其他貴重儀器如層析、質譜儀等,能作為初步環安或食安的快速篩檢方法。本論文的主要重點是將拋光技術延伸應用到網版印刷碳電極 (screen-printed carbon electrode, SPCE) 上,使得SPCE的表面形貌和粗糙度能更加平整,趨近於以往電化學分析上常用的光滑碳電極 (glassy carbon electrode, GCE)。 第一章節主要介紹如何以超音波拋光技術,應用於先前實驗室研發的SPCE平臺上。第二章為詳述實驗條件、儀器與藥品。第三章詳細介紹SPCE經過拋光處理後,拋光後SPCE的物理、化學和電化學特性探討。第四章和第五章內容是闡述拋光SPCE的電化學上的應用。在第四章中是將catechol修飾到拋光 SPCE上,研究發現catechol化學修飾電極可當作生化感測器中提供氧化還原電子傳導的物質 (mediator),因此研發出快速、方便且具有可拋性的生化感測器,能靈敏地偵測聯氨 (hydrazine) 和菸鹼醯胺腺嘌呤二核苷酸 (nicotinamide adenine dinucleotide, NADH)。第五章則是將拋光後SPCE直接應用於rutin的偵測,開發出高選擇性和靈敏性的感測器,可廣泛用於真實樣品的分析。 總之,本論文結合簡易的超音波拋光技術和SPCE平臺,發展出更加多元的金屬氧化物修飾電極SPCE,並搭配操作簡易的電化學偵測系統為基礎,研發出更多元的分析方法,並能成功應用到真實樣品的檢驗和應用。
URI: http://hdl.handle.net/11455/90572
文章公開時間: 2017-04-23
顯示於類別:化學系所

文件中的檔案:
檔案 大小格式 
nchu-103-8098051007-1.pdf9.3 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。