請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/90587
標題: Development of Noble Metal Decorated Magnetic Structures as Surface-Enhanced Raman Scattering Substrates for Determination of Biologically Important Species
開發貴重金屬修飾磁性奈米材料以及其在表面訊號增強拉曼散射法測量生物性樣品之應用性探討
作者: 艾麥理
Melisew Tadele Alula
關鍵字: Creatinine
Gold nanoparticles
Magnetic nanoparticles
Nucleobases
Photoreduction
Silver nanoparticles
Surface-enhanced Raman scattering.
肌酸酐
金奈米粒子
磁性奈米粒子
核酸鹼基
光還原反應
銀奈米粒子
表面增強拉曼散射
引用: References [1] D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules, John Wiley & Sons Ltd, Baffins Lane, Chichester, West Sussex PO19 1UD, England, 2002. [2] C.V. Raman, K.S. Krishnan, Nature 121 (1929) 501-502. [3] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, Chem. Rev. 99 (1999) 2957-2975. [4] Ewen Smith, Geoffrey Dent, Modern Raman Spectroscopy-A Practical Approach, 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England. [5] R. S. Das, Y.K. Agrawal, Vib. Spectrosc. 57 (2011) 163-176. [6] A. Kudelski, Talanta 76 (2008) 1-8. [7] S. P. Mulvaney, M. D. Musick, C. D. Keating, M. J. Natan, Langmuir 19 (2003) 4784-4790. [8] G. C. Schatz, Acc. Chem. Res. 17 (1984) 370-376. [9] K. Kneipp, H. Kneipp, J. Kneipp, Acc. Chem. Res. 39 (2006) 443-450. [10] M. Moskovits, Rev. Mod.Phys. 57 (1985) 783-828. [11] M. Fleischmann, P.J. Hendra, A.J. Mcquillan, Chem. Phys. Lett. 26 (1974) 163- 166. [12] J. A. Creighton, Notes Rec. R. Soc. doi:10.1098/rsnr.2009.0061 [13] D. L. Jeanmaire, R. P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 84 (1977) 1-20. [14] M. G. Albrecht, J. A. Creighton, J. Am. Chem. Soc. 99 (1977) 5215-5217. [15] A. Campion, P. Kambhampati, Chem. Soc. Rev. 27 (1998) 241-250. [16] M. Moskovits, J. Raman Spectrosc. 36 (2005) 485-496. [17] T. Dadosh, J. Sperling,G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, I. Bar-Joseph, ACS Nano 3 (2009) 1988-1994. [18] J. Kneipp, B. Wittig, H. Bohr ,K. Kneipp, Theor. Chem. Acc. 125 (2010) 319-327. [19] C. L. Haynes, A. D. McFarland, R. P. Van Duyne, Anal. Chem. 77 (2005) 338-346. [20] K. Kneipp1, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, J. Phys. Condens. Matter 14 (2002) R597-R624. [21] A. Campion, J. E. Ivanecky , C. M. Child, M. Foster. J. Am. Chem. Soc. 117 (1995) 11807-11808 [22] S. M. Morton, E. Ewusi-Annan, L. Jensen, Phys. Chem. Chem. Phys. 11 (2009) 7424-7429. [23] J. R. Lombardi, R. L. Birke, J. Phys. Chem. C 112 (2008) 5605-5617. [24] P. Kambhampati, C. M. Child, M. C. Foster, A. Campion, J. Chem. Phys. 108 (1998) 5013-5026. [25] X. Gao, J. P. Davies, M. J. Weaver, J. Phys. Chem. 94 (1990) 6858-6864. [26] R. M. Jarvis, A. Brooker, R. Goodacre, Anal. Chem. 76 (2004) 5198-5202. [27] M. Moskovits, J. S. Suh, J. Am. Chem. Soc. 107 (1985) 6826-6829. [28] X.-M. Lin, Y. Cui, Y. –H. Xu, B. Ren, Z. –Q. Tian, Anal. Bioanal. Chem. 394 (2009) 1729-1745. [29] C. L. Haynes, R. P. Van Duyne, J. Phys. Chem. B 105 (2001) 5599-5611. [30] J. Zhang, X. Li, X. Sun, Y. Li, J. Phys. Chem. B 109 (2005) 12544-12548. [31] P. N. Njoki, I-I. S. Lim, D. Mott , H. –Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, C. -J. Zhong, J. Phys. Chem. C 111 (2007) 14664-14669. [32] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B 107 (2003) 668-677 [33] P. Freunscht, R. Van Duyne, S. Schneider, Chem. Phys. Lett. 281 (1997) 372-378. [34] L. Dick, A. McFarland, C. Haynes, R. Van Duyne, J. Phys. Chem. B 106 (2002) 853-860. [35] R. Vanduyne, J. Hulteen, D. Treichel, J. Chem. Phys. 99 (1993) 2101-2115. [36] K. A.Willets, R. P. Van Duyne, Annu. Rev. Phys. Chem. 58 (2007) 267-297. [37] M. Fan, G. F.S. Andrade, A. G. Brolo, Anal. Chim. Acta 693 (2011) 7-25. [38] B. Giese, D. McNaughton, J. Phys. Chem. B 106 (2002) 101-112. [39] G. G. Huang, X. X. Han, M. K. Hossain, Y. Ozaki, Anal. Chem. 81 (2009) 5881- 5888. [40] W. W. Yu, I. M. White, Analyst 137 (2012) 1168-1173. [41] I. Lee, S. W. Han, K. Kim, J. Raman Spectrosc. 32 (2001) 947-952. [42] J. Neddersen, G. Chumanov, T. M. Cotton, Appl. Spectrosc. 47 (1993) 1959-1964. [43] M. Procházka, P. Mojzeš, J. Štěpánek, B. Vlčková, P.-Y. Turpin, Anal. Chem. 69 (1997) 5103-5108. [44] L. -C. Yang,Y. -S. Lai, C. -M. Tsai,Y. -T. Kong, C.-I Lee, C. –L. Huang, J. Phys. Chem. C 116 (2012) 24292-24300. [45] Ricardo Aroca, Surface-Enhanced Vibrational Spectroscopy, 2006, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England [46] R.F. Aroca, R.A. Alvarez-Puebla, N. Pieczonka, S. Sanchez-Cortez, J.V. Garcia- Ramos, Adv. Colloid Interface Sci. 116 (2005) 45-61. [47] K. Kneipp, Y. Wang, H. Kneipp,L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, Phys. Rev. Lett. 78 (1997) 1667-1670. [48] A. Pyatenko, M. Yamaguchi, M. Suzuki, J. Phys. Chem. C 111 (2007) 7910-7917. [49] R. A. Alvarez-Puebla , E. Arceo , P. J. G. Goulet, J. J. Garrido, R. F. Aroca, J. Phys. Chem. B 109 (2005) 3787-3792. [50] R. S. Sheng, L. Zhu, M. D. Morris, Anal. Chem. 58 (1986) 1116-1119. [51] B. Giese, D. McNaughton, J. Phys. Chem. B 106 (2002) 101-112. [52] C. H. Munro, W. E. Smith, M. Garner, J. Clarkson, P. C. White, Langmuir 11 (1995) 3712-3720. [53] A. M. Ahern, R. L. Garrell, Anal. Chem.59 (1987) 2813-2816. [54] M. Maillard, P. Huang, L. Brus, Nano Lett. 3 (2003) 1611-1615. [55] C. J. L. Constantino, T. Lemma, P. A. Antunes, R. Aroca, Anal. Chem. 73 (2002) 3674-3678. [56] M. Harada, E. Katagiri, Langmuir 26 (2010) 17896-17905. [57] M. Muniz-Miranda, J. Raman Spectrosc. 33 (2002) 295-297. [58] F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, J. W. Perry, Adv. Mater. 14 (2002) 194-198. [59] A. Callegari, D. Tonti, M. Chergui, Nano Lett. 3 (2003) 1565-1568. [60] S. Conroy, S. H. Jerry Lee, M. Zhang, Adv. Drug Deliv. Rev. 60 (2008) 1252- 1265. [61] A. Bee, R. Massart, S. Neveu, J. Magn. Magn. Mater. 149 (1995) 6-9. [62] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R. N. Muller, Chem. Rev. 108 (2008) 2064-2110. [63] L. Shen, P. E. Laibinis, T. A. Hatton, Langmuir 15 (1999) 447-453. [64] M. H. Sousa, F. A. Tourinho, J. Depeyrot, G. J. da Silva, M. C. F. L. Lara, J. Phys. Chem. B 105 (2001) 1168-1175. [65] R. S. Molday, D. Mackenzie, J. Immunol. Methods 52 (1982) 353-367. [66] H. Pardoe, W. Chua-Anusorn, T. G. St. Pierre, J. Magn. Magn. Mater. 225 (2001) 41-46. [67] S. Charan,C. W. Kuo,Y. -W. Kuo, N. Singh, P. Drake,Y. -J. Lin, L. Tay, P. Chen, J. Appl.Phys. 105 (2009) 07B310. [68] S. -K. Li, F. -Z. Huang, Y. Wang, Y. -H. Shen, L. -G. Qiu, A. -J. Xie, S. -J. Xu, J. Mater. Chem. 21 (2011) 7459-7466. [69] L. Jiang, T. You, P. Yin, Y. Shang, D. Zhang, L. Guo, S. Yang, Nanoscale 5 (2013) 2784-2789. [70] R.Y. Hong, S.Z. Zhang, G.Q. Di , H.Z. Li , Y. Zheng, J. Ding, D.G. Wei, Mater. Res. Bull. 43 (2008) 2457-2468. [71] J. Lin, W. Zhou, A. Kumbhar, J. Fang, E. E. Carpenter, C. J. O'Connor, J. Solid State Chem.159 (2001) 26-31. [72] L. Yang, Z. Bao, Y. Wub, J. Liu, J. Raman Spectrosc. 43 (2012) 848-856. [73] K. Kim, H. J. Jang, K. S. Shin, Analyst 134 (2009) 308-313. [74] Y.H. Wang, J.K. Lee, J. Mol. Catal. A-Chem. 263 (2007) 163-168. [75] J. Xia, A. Wang, X. Liu, Z. Su, Appl. Surf. Sci. 257 (2011) 9724- 9732. [76] W. -Y. Chen, Y. -C. Chen, Anal. Bioanal. Chem. 398 (2010) 2049-2057. [77] S. -Y. Han, Q. -H. Guo, M. -M. Xu, Y. -X. Yuan, L. -M. Shen, J. -L. Yao, W. Liu, R. -A. Gu, J. Colloid Interface Sci. 378 (2012) 51-57 [78] J. Du, C. Jing, J. Colloid. Interface Sci. 358 (2011) 54-61. [79] Y. Zhai, J. Zhai, Y. Wang, S. Guo, W. Ren, S. Dong, J. Phys. Chem. C 113 (2009) 7009-7014. [80] S. Charan, C. W. Kuo, Y. W. Kuo, N. Singh, P. Drake, Y. J. Lin, L. Tay, P. Chen, J. Appl. Phys. 105 (2009) 1-3. [81] J. Du, C. Jing, J. Phys. Chem. C 115 (2011) 17829-17835. [82] L. Chen, W. Hong, Z. Guo, Y. Sa, X. Wang, Y. M. Jung, B. J. Zhao, J. Colloid Interface Sci. 368 (2012) 282-286. [83] S. Peng, C. Lei, Y. Ren, R. E. Cook, Y. Sun, Angew. Chem. Int. Ed. 50 (2011) 3158-3163. [84] B. Ren, G. -K. Liu, X. -B. Lian, Z. -L. Yang, Z. -Q. Tian, Anal. Bioanal. Chem. 388 (2007) 29-45. [85] K. Kneipp, Y. Wang, R. R. Dasari, M.S. Feld, Spectrochimica Acta Part a- Molecular and Biomolecular Spectroscopy 51 (1995) 481-487. [86] G. G. Huang, X. X. Han, M. K. Hossain, Y. Ozaki, Anal. Chem. 81 (2009) 5881- 5888. [87] K. Ma, J. M. Yuen, N. C. Shah, J. T. Walsh, Jr., M. R. Glucksberg, R. P. Van Duyne, Anal. Chem. 83 (2011) 9146-9152. [88] G. Chumanov, T. M. Cotton, Proc. SPIE Conf. Biomed. Appl. Raman Spectrosc. 3608 (1999), 204-210. [89] K. Kneipp, J. Flemming, J. Mol. Struct. 145 (1986) 173-179. [90] X. Zhang, M.A. Young, O. Lyandres, R.P. van Duyne, J. Am. Chem. Soc. 127 (2005) 4484-4489. [91] L. Zeiri , B. V. Bronk, Y. Shabtai, J. Eichler, S. Efrima, Appl. Spectros. 58 (2004) 33-40. References [1] J. Kneipp, B. Wittig, H. Bohr, K. Kneipp, Theor. Chem. Acc. 125 (2010) 319-327. [2] R. Sheng, F. Ni, T. M. Cotton, Anal. Chem. 63 (1991) 437-442. [3] B. Kochanska, R. T. Smolenski, N. Knap, Acta. Biochim. Pol. 47 (2000) 877-879. [4] W. J. VanDusen, J. Fu, F. J. Bailey, C. J.Burke, W. K. Herber, H. A. George, Biotechnol. Prog. 13(1997) 1-7. [5] M. L. Ribeiro, D. G. Priolli, D. D. Miranda, D. P. Arcari, J. Pedrazzoli, C. A. Martinez, Clin. Colorectal Cancer 7 (2008) 267-272. [6] A. Camilli, B. L. Bassler, Science 311 (2006)1113-1116. [7] C. A. Lowery, T. J. Dickerson, K. D. Janda, Chem. Soc. Rev.37 (2008) 1337-1346. [8] A. Barhoumi, D. Zhang, F. Tam, N. J. Halas, J. Am. Chem. Soc. 130 (2008) 5523- 5529. [9] M. Muniz-Miranda, C. Gellini, M. Pagliai, M. Innocenti, P. R. Salvi, V. Schettino, J. Phys. Chem. C 114 (2010) 13730-13735. [10] M. Green, F. M. Liu, L. Cohen, P. Köllensperger, T. Cass, Faraday Discuss. 132 (2006) 269-280. [11] E. Koglin, J. M. Sequaris, Topics in Current Chemistry; Springer Verlag:New York, 1986; Vol. 134, p 1-57. [12] K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, M. S. Feld, Appl. Spectrosc. 56 (2002) 150-154 [13] K. Kneipp, J. Flemming, J. Mol. Struct. 145 (1986) 173-179. [14] S. Shahrokhian, S. Rastgar, M. K. Amini, M. Adeli, Bioelectrochemistry 86 (2012) 78-86. [15] X. Zhang, X. Liang, M. Xu, X. Bao, F. Wang, Z. Yang, J. App. Electrochem. 42 (2012) 375-381. [16] B. Boka, N. Adanyi, D. Virag, I. Frebort, A. Kiss, Electroanalysis 25 (2013) 237- 242. [17] R. Thangaraj, A. S. Kumar, J. Solid State Electrochem. 17 (2013) 583-590. [18] E. P. Nesterenko, C. Gulvarc'h, C. Duffy, B. Pauli, J. Sep. Sci. 30 (2007) 2910- 2916. [19] P. Liu, Y.-Y. Li, H.-M. Li, D.-L. Wan, Y. Tang, Anal. Chim. Acta 687 (2011) 159- 167. [20] W. Wang, L. Ahou, S. Wang, Z. Luo, Z. Hu, Talanta 74 (2008) 1050-1055. [21] I. Heisler, J. Keller, R. Tauber, M. Sutherland, H. Fuchs, Anal. Biochem. 302 (2002) 114-122. [22] L. M. Devi, D. P. Negi, Nanotechnology 22 (2011) 245502. [23] Q. Xu, Z. Liu, X. Hu, L. Kong, S. Liu, Anal. Chim. Acta 707 (2011) 114-120. [24] E. Liu, B. Xue, J. Pharm. Biomed. Anal. 41 (2006) 649-653. [25] C.-F. Chow, J. Fluoresc. 22 (2012) 1539-1546. [26] B. Han, N. Choi, K. H. Kim, D. W. Lim, J. Choo, J. Phys. Chem. C 115 (2011) 6290-6296. [27] K. Kim, H. J. Jang, K. S. Shin, Analyst 134 (2009) 308-313. [28] L. Yang, Z. Bao, Y. Wu, J. Liu, J. Raman Spectrosc. 43 (2012) 848-856. [29] K. Kim, J.-y. Choi, H. B. Lee, K.S. Shin, ACS Appl. Mater. Interfaces 2 (2010) 1872-1878. [30] B.-H. Jun, M. S. Noh, J. Kim, G. Kim, H. Kang, M.-S. Kim, Y.-T, Seo, J. Baek, J.-H. Kim, J. Park, S. Kim, Y.-K. Kim, T. Hyeon, M.-H. Cho, D.H. Jeong, Y.-S. Lee, Small 6 (2010) 119-125. [31] J. Du, C. Jing, J. Colloid Interface Sci. 358 (2011) 54-61. [32] J. Du, C. Jing, J. Phys. Chem. C 115 (2011) 17829-17835. [33] U. A. Lokman, O. E. Bilgen, J. Appl. Polym. Sci. 114 (2009) 2246-2253. [34] L. Cumbal, J. Greenleaf, D. Leun, A. K. SenGupta, React. Funct. Polym. 54 (2003) 167-180. [35] Q. Liu, L. Wang, A. Xiao, J. Gao, W. Ding, H. Yu, J. Huo, M. Ericson, J. Hazard. Mater. 181 (2010) 586-592. [36] Y. Tai, L. Wang, J. Gao, W. A. Amer, W. Ding, H. Yu, J. Colloid Interface Sci. 360 (2011) 731-738. [37] L. C. Yang, Y.S. Lai, C. M. Tsai, Y. T. Kong, C. I. Lee, C. L. Huang, J. Phys. Chem. C 116 (2012) 24292-24300. [38] C. H. Munro, W. E. Smith, M. Garner, J. Clarkson, P. C. White, Langmuir 11 (1995) 3712-3720. [39] A. M. Ahern, R. L. Garrell, Anal. Chem. 59 (1987) 2813-2816. [40] M. Maillard, P. Huang, L. Brus, Nano Lett. 3 (2003) 1611-1615. [41] S. Sun, H. Zeng, J. Am. Chem. Soc. 124 (2002) 8204-8205. [42] K. -H. Choi, W.-S. Chae, E. -M. Kim, J. -H. Jun, J. -H. Jung, Y. -R. Kim, J.-S. Jung, IEEE Transactions on Magnetics 47 (2011) 3369-3372. [43] S. F. Chin, K. S. Iyer, C. L. Raston, Cryst. Growth Des. 9 (2009) 2685-2689. [44] R. He, X. Qian, J. Yin, Z. Zhu, J. Mater. Chem. 12 (2002) 3783-3786. [45] Z. Xu, Y. Hou, S. Sun, J. Am. Chem. Soc., 129 (2007) 8698-8699. [46] X. Wang, H. Liu, D. Chen, X. Meng, T. Liu, C. Fu, N. Hao, Y. Zhang, X. Wu, J. Ren, F. Tang, ACS Appl. Mater. Interfaces 5 (2013) 4966-4971. [47] B. O. Skadtchenko, R. Aroca, Spectrochim Acta A 57 (2001) 1009-1016. [48] M. Futamata, J. Phys. Chem. 99 (1995) 11901-11908. [49] E. Koglin, J. M. Séquaris, Topics in Current Chemistry, Springer Verlag Berlin Heidelberg, 1986, pp. 1-57. [50] C. Otto, T. J. van der Tweel, F. F. M. de Mul, J. Greve, J. Raman Spectrosc. 17 (1986) 289-298. [51] S. Basu, S. Jana, S. Pande, T. Pal, J. Colloid Interface Sci. 321 (2008) 288-293. [52] E. Papadopoulou, S. E. J. Bell, Analyst 135 (2010) 3034-3037. [53] A. Barhoumi, D. Zhang, F. Tam, N. J. Halas, J. Am. Chem. Soc. 130 (2008) 5523- 5529. [54] M. Muniz-Miranda, C. Gellini, M. Pagliai, M. Innocenti, P.R. Salvi, V. Schettino, J. Phys. Chem. C 114 (2010) 13730-13735. [55] K.-H. Choa, J. Choo, S.-W. Joo, Spectrochimica Acta Part A 61 (2005) 1141-1145. [56] A. Pyatenko, M. Yamaguchi, M. Suzuki, J. Phys. Chem. C 111 (2007) 7910-7917. [57] R. A. Alvarez-Puebla, E. Arceo, P. J. G. Goulet, J. J. Garrido, R. F. Aroca, J. Phys. Chem. B 109 (2005) 3787-3792. [58] R. S. Sheng, L. Zhu, M. D. Morris, Anal. Chem. 58 (1986) 1116-1119. [59] B. Giese, D. McNaughton, J. Phys. Chem. B 106 (2002) 101-112. [60] J. Zhang, J. Liu, S. Wang, P. Zhan, Z. Wang, Z. Ming, Adv. Funct. Mater. 14 (2004) 1089-1096. [61] M. Harada, E. Katagiri, Langmuir 26 (2010) 17896-17905. References [1] M. Fleischmann, P. J. Hendra, A. McQuillan, J. Chem. Phys. Lett. 26 (1974)163- 166. [2] S. Chan, S. Kwon, T.W Koo, L. P. Lee, A. A. Berlin, Adv. Mater. 15 (2003) 1595-1598. [3] A.D. McFarland, M. A. Young, J. A. Dieringer, R.P. Van Duyne, J. Phys. Chem. B 109 (2005) 11279-11285. [4] B. Han, N. Choi, K. H. Kim, D. W. Lim, J. Choo, J. Phys. Chem. C 115 (2011) 6290- 6296. [5] K. Kim, H. J. Jang, K. S. Shin, Analyst 134 (2009) 308-313. [6] L. Yang, Z. Bao, Y. Wu, J. Liu, J. Raman Spectrosc. 43 (2012) 848-856. [7] K. Kim, J.-y. Choi, H. B. Lee, K.S. Shin, ACS Appl. Mater. Interfaces 2 (2010) 1872- 1878. [8] B.-H. Jun, M. S. Noh, J. Kim, G. Kim, H. Kang, M.-S. Kim, Y.-T, Seo, J. Baek, J. H. Kim, J. Park, S. Kim, Y.-K. Kim, T. Hyeon, M.-H. Cho, D.H. Jeong, Y.-S. Lee, Small 6 (2010) 119-125. [9] K. Kneipp, Y. Wang, H. Kneipp, L.T Perelman, I. Itzkan, R. Dasari, M.S. Feld, Phys. Rev. Lett. 78 (1997) 1667-1670. [10] L. Zhang, J. Xu, L. Mi, H. Gong, S. Jiang, Q. Yu, Biosens. Bioelectron. 31 (2012) 130-136 [11] J. Du, C. Jing, J. Colloid. Interface Sci. 358 (2011) 54-61. [12] X. Wang, H. Liu, D. Chen, X. Meng, T. Liu, C. Fu, N. Hao, Y. Zhang, X. Wu, J. Ren, F. Tang, ACS Appl. Mater. Interfaces 5 (2013) 4966-4971. [13] M. Spuch-Calvar, L. Rodríguez-Lorenzo, M. P. Morales, R. A. A´ lvarez-Puebla, L. M. Liz-Marzán, J. Phys. Chem. C 113 (2009) 3373-3377. [14] Y. Zhai, J. Zhai, Y. Wang, S. Guo, W. Ren, S. Dong, J. Phys. Chem. C 113 (2009) 7009-7014. [15] E. M. Semenova, S. A. Vorobyova, A. I. Lesnikovich, J. A. Fedotova, V. G. Bayev, J. Alloys Compd. 530 (2012) 97-101. [16] L. Zhang, J. Xu, L. Mi, H. Gong, S. Jiang, Q. Yu, Biosens. Bioelectron. 31 (2012) 130-136 [17] I. Y. Goon, L. M. H. Lai, M. Lim, P. Munroe, J. J. Gooding, R. Amal, Chem. Mater. 21 (2009) 673-681. [18] S. Charan, C. W. Kuo, Y. W. Kuo, N. Singh, P. Drake, Y. J. Lin, L. Tay, P. Chen, J. Applied phys. 105 (2009) 1-3. [19] J. Du, C. Jing, J. Phys. Chem. C 115 (2011) 17829-17835. [20] L. Chen, W. Hong, Z. Guo, Y. Sa, X. Wang, Y. M. Jung, B. Zhao, J. Colloid Interface Sci. 368 (2012) 282-286. [21] S. Peng, C. Lei, Y. Ren, R. E. Cook, Y. Sun, Angew. Chem. Int. Ed. 50 (2011) 3158 -3163. [22] Y. D. Jin, X. H. Gao, Nat. Nanotechnol. 4 (2009) 571-576. [23] I.Y. Goon, L.M. H. Lai, M. Lim, P. Munroe, J. J. Gooding, R. Amal, Chem. Mater. 21 (2009) 673-681. [24] Y. Jin, C. Jia, S. –W. Huang, M. O'Donnell, X. Gao, Nat. Commun. 1 (2010) 41- 43. [25] L. C. Yang, Y.S. Lai, C. M. Tsai, Y. T. Kong, C. I. Lee, C. L. Huang, J. Phys. Chem. C 116 (2012) 24292-24300. [26] C. H. Munro, W. E. Smith, M. Garner, J. Clarkson, P. C. White, Langmuir 11 (1995) 3712-3720. [27] A. M. Ahern, R. L. Garrell, Anal. Chem. 59 (1987) 2813-2816. [28] M. Maillard, P. Huang, L. Brus, Nano Lett. 3 (2003) 1611-1615. [29] K. Esumi, A. Suzuki, N. Aihara, K. Usui, K. Torigoe, Langmuir 14 (1998) 3157- 3159. [30] K. -H. Choi, W.-S. Chae, E. -M. Kim, J. -H. Jun, J. -H. Jung, Y. -R. Kim, J.-S. Jung, IEEE Transactions on Magnetics 47 (2011) 3369-3372. [31] S. F. Chin, K. S. Iyer, and C. L. Raston, Cryst. Growth Des. 9 (2009) 2685-2689. [32] Z. Xu, Y. Hou, S. Sun, J. Am. Chem. Soc., 129 (2007) 8698-8699. [33] B. O. Skadtchenko, R. Aroca, Spectrochim Acta A 57 (2001) 1009-1016. [34] M. Futamata, J. Phys. Chem. 99 (1995) 11901-11908. [35] E. Koglin, J. M. Séquaris, Topics in Current Chemistry, Springer Verlag Berlin Heidelberg, 1986, pp. 1-57. [36] C. Otto, T. J. J. van den Tweel, F. F. M. de Mul, J. Greve, J. Raman Spectrosc. 17 (1986) 289-298. [37] K. R. Brown, D. G. Walter, M. J. Natan, Chem. Mater.12 (2000) 306-313. [38] Y. Ye, H. Liu, L. Yang, J. Liu, Nanoscale, 4 (2012) 6442-6448. [39] R.F. Aroca, R.A. Alvarez-Puebla, N. Pieczonka, S. Sanchez-Cortez, J.V. Garcia- Ramos, Adv. Colloid Interface Sci.116 (2005) 45-61. [40] S. Yang , Y. Wang, Q. Wang, R. Zhang, B. Ding, Colloids Surf., A: Physicochem. Eng. Aspects 301 (2007) 174-183. [41] M. T. Alula, J. Yang, Anal. Chim. Acta 812 (2014) 114-120. References [1] T. Panasyuk-Delaney, V. M. Mirsky, O. S. Wolfbeis, Electroanalysis 14(2002) 221-224. [2] J. D. Jones, P. C. Burnett, Clin. Chem. 20 (1974) 1204-1212. [3] P. C. Falcó, L.A. T.Genaro, S. M. Lloret, F. B. Gomez, A. S. Cabeza, C. M. Legua, Talanta 55 (2001) 1079-1089. [4] S. Hallan, A. Asberg, M. Lindberg, H. Johnsen, Am. J. Kidney Dis. 44 (2004) 84-93. [5] S. -L. Yan, P. -Z. Lin, M. -W. Hsiao, J. Chromatogr. Sci. 37 (1999) 45-50. [6] F. Wei, S. Cheng, Y. Korin, E. F. Reed, D. Gjertson, C. -M. Ho, H. A. Gritsch, J. Veale, Anal. Chem. 84 (2012) 7933-7937. [7] C. M. Gibson, D. S. Pinto, S. A. Murphy, D. A. Morrow, H. -P. Hobbach, S. D. Wiviott, R. P. Giugliano, C. P. Cannon, E. M. Antman, E. Braunwald, J Am Coll Cardiol. 42 (2003) 1535-1543. [8] W. Y. Wu, X. Xu, W. D. Fraser, Z. C. Luo, Am. J. Hypertens. 25 (2012) 711-717. [9] T. Isik, E. Ayhan, M. Ergelen, H. Uyarel, Int. J. Cardiol. 156 (2012) 328-329. [10] G. Ndrepepa, S. Braun, H.-U. Hasse, S. Schulz, S. Ranftl, M. Hadamitzky, J. Mehilli, A. Schömig, A. Kastrati, Am. J. Cardiol. 109 (2012) 1260-1265. [11] R. Mutluay, S. M. Deger, E. Bahadir, A. O. Durmaz, R. Çitil, S. Sindel, Adv. Ther. 29 (2012) 276-286. [12] S.H. Huang, Y. C. Shih, C. Y Wu, C. J. Yuan, Y. S. Yang, Y. K. Li, T. K. Wu, Biosens. Bioelectron. 19 (2004) 1627-1633. [13] J. A. Weber, A. P. Van Zanten, Clin. Chem. 37 (1991) 695-700. [14] M.C. Gennaro, C. Abrigo, E. Marengo, C. Baldin, M.T. Martelleti, Analyst 120 (1995) 47-51. [15] P. Boyne, B. A. Robinson, P. Murphy, M. McKay, Clin. Chem.31 (1985) 1564- 1565. [16] B. Tombach, J. Schneider, F. Matzkies, R. M. Schaefer, G. C. Chemnitius, Clin. Chim. Acta 312 (2001) 129-134. [17] S. J. Soldin, L. Henderson, J. G. Hill, Clin. Biochem. 11 (1978) 82-86. [18] K. G. Blass, R. J. Thibert, L. K. Lam, J. Clin. Chem. Clin Biochem. 12 (1974) 336-343. [19] P. Masson, P. Ohlsson, I. Bjorkhem, Clin. Chem. 27 (1981) 18-21. [20] R. T. Ambrose, D.F. Ketchum, J. W. Smith. Clin. Chem. 29 (1983) 256-259. [21] T. Smith-Palmer, J. Chromatogr. B 781 (2002) 93-106. [22] A. K. Hewavitharana, H. L. Bruce, J. Chromatogr. B 784 (2003) 275-281. [23] G. Werner, V. Schneider, J. Emmert, J. Chromatogr. 525 (1990) 265-275. [24] C. J. Kochansky, T. G. Strein, J. Chromatogr. B 747 (2000) 217-227. [25] U. Lad, S. Khokhar, G. M. Kale, Anal. Chem. 80 (2008) 7910-7917. [26] G. F. Khan, W. Wernet, Anal. Chim. Acta 351 (1997) 151-158. [27] A. Radomska, E. Bodenszac, S. Głąb, R. Koncki, Talanta 64 (2004) 603-608. [28] J. A. Straseski, M. E. Lyon, W. Clarke, J. A. DuBois, L. A. Phelan, A.W. Lyon, Clin. Chem. 57 (2011) 1566-1573. [29] A. Benkert, F. Scheller, W. Schössler, C. Hentschel, B. Micheel, O. Behrsing, G. Scharte, W. Stöcklein, A. Warsinke, Anal. Chem. 72 (2000) 916-921. [30] H. Thompson, G. A. Rechnitz, Anal. Chem. 46 (1974) 246-251. [31] L. Campanella, F. Mazzei, M. P. Sammartino, M. Tomassetti, Bioelectrochem. Bioenerg. 23 (1990) 195-202. [32] V. Razumas, J. Kanapieniené, T. Nylander, S. Engström, K. Larsson, Anal. Chim. Acta 289 (1994) 155-162. [33] J. Galbán, Y. Andreu, M. J. Almenara, S. D. Marcos, J. R. Castillo, Talanta 54 (2001) 847-854. [34] H. R. Zare, N. Rajabzadeh, N. Nasirizadeh, M. M. Ardakani, J. Electroanal. Chem.589 (2006) 60-69. [35] H. M. Nassef, A. E. Radi, Anal. Chim. Acta 583 (2007) 182-189. [36] S. K. George, M. T. Dipu, U. R. Mehra, P. Singh, A. K. Verma, J. S. Ramgaokar, J. Chromatogr. B 832 (2006) 134-137. [37] X. Dai, X. Fang, C. Zhang, R. Xu, B. Xu, J. Chromatogr. B 857 (2007) 287-295. [38] A. Zinellu, C. Carru, S. Sotgia, L. Deiana, Anal. Biochem. 330 (2004) 298-305. [39] E. Caussé, A. Pradelles, B. Dirat, A. Negre-Salvayre, R. Salvayre, F. Couderc, Electrophoresis 28 (2007) 381-387. [40] W. R. Premasiri, R. H. Clarke, M. E. Womble, Laser Surg. Med. 28 (2001) 330- 334. [41] H. Wang, N. Malvadkar, S. Koytek, J. Bylander, W. B. Reeves, M. C. Demirel, J. Biomed. Opt. 15 (2010) 027004. [42] R. Stosch, A. Henrion, D. Schiel, B. Güttler, Anal. Chem. 77 (2005) 7386-7392. [43] M. M. Harper, K. S. McKeating, Karen Faulds, Phys. Chem. Chem. Phys. 15 (2013) 5312-5328. [44] S. Pahlow, A. März, B. Seise, K. Hartmann, I. Freitag, E. Kämmer, R. Böhme, V. Deckert, K. Weber, D. Cialla, J. Popp, Eng. Life Sci. 12 (2012) 131-143. [45] B. L. Goodall, A. M. Robinson, C. L. Brosseau. Phys. Chem. Chem. Phys. 15 (2013) 1382-1388 [46] T. T. B. Quyen, W. –N. Su, K.-J. Chen, C.-J. Pan, J. Rick, C. –C. Chang, B.-J. Hwang, J. Raman Spectrosc. 44 (2013) 1671-1677 [47] R. Li, C. Han, Q.-W. Chen, RSC Adv. 3 (2013) 11715-11722. [48] J. Yin, Y. Zang, C. Yue, Z. Wu, S. Wu, J. Li, Z. Wu, J. Mater. Chem. 22 (2012) 7902-7909. [49] M. Gao ,G. Xing , J. Yang, L. Yang, Y. Zhang, H. Liu, H. Fan, Y. Sui, B. Feng, Y. Sun, Z. Zhang, S. Liu, S. Li, H. Song, Microchim. Acta 179 (2012) 315-321. [50] F. Xu, Y. Zhang, Y. Sun, Y. Shi, Z. Wen, Z. Li, J. Phys. Chem. C 115 (2011) 9977-9983. [51] L. Sun, D. Zhao, Z. Zhang, B. Li, D. Shen, J. Mater. Chem. 21 (2011) 9674-9681. [52] C. Cheng, B. Yan, S. M. Wong, X. Li, W. Zhou, T. Yu, Z. Shen, H. Yu, H. J. Fan, ACS Appl. Mater. Interfaces 2 (2010) 1824-1828. [53] W. Song, Y. Wang, H. Hu, B. Zhao, J. Raman Spectrosc. 38 (2007) 1320-1325. [54] P. Chen, L. Gu, X. Xue, Y. Song, L. Zhu, X. Cao, Mater. Chem. Phys.122 (2010) 41- 48. [55] L. Yang, W. Ruan, X. Jiang, B. Zhao, W. Xu, J. R. Lombardi, J. Phys. Chem. C 113 (2009) 117-120. [56] C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. 43 (2004) 4774- 4777. [57] J. Xia, A. Wang, X. Liu, and Z. Su, Appl. Surf. Sci. 257 (2011) 9724-9732. [58] K. -H. Choi, W. -S. Chae, E. –M. Kim, J. –H. Jun, J. -H. Jung, Y. -R. Kim, J.-S. Jung, IEEE Transactions on Magnetics 47 (2011) 3369-3372. [59] S. F. Chin, K. S. Iyer, C. L. Raston, Cryst. Growth Des. 9 (2009) 2685-2689. [60] R. He, X. Qian, J. Yin, Z. Zhu, J. Mater. Chem. 12 (2002) 3783-3786. [61] B.O. Skadtchenko, R. Aroca, Spectrochim Acta A 57 (2001) 1009-1016. [62] J. Gao , Y. Hua, S. Li , Y. Zhang, X. Chen, Chem. Phys. 410 (2013) 81-89. [63] R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, D.G. Wei, Mater. Res. Bull. 43 (2008) 2457-2468. [64] T. Alammar, A.-V. Mudring, J. Mater. Sci. 44 (2009) 3218-3222. [65] S. Chen, U. Nickelb, J. Chem. Soc., Faraday Trans. 92 (1996) 1555-1562. [66] A. Hasanpour, M. Niyaifar, M. Asan, J. Amighian, J. Magn. Magn.Mater. 334 (2013) 41-44. [67] V. V. Shvalagin, A. L. Stroyuk, S. Y. Kuchmii, J. Nanopart. Res. 9 (2007)427-440. [68] G. Shan, S. Zheng, S. Chen, Y. Chen, Y. Liu, Colloids Surf B Biointerfaces 94 (2012) 157-162. [69] A. Henglein, J. Phys. Chem. 97 (1993) 5457-5471. [70]G. Zhu, Y. Liu, H. Xu, Y. Chen, X. Shen, and Z. Xu, CrystEngComm. 14 (2012) 719-725. [71]. M. G. Simic, S. V. Jovanovic, J. Am. Chem. Soc. 111 (1989) 5718-5182.
摘要: Surface-enhanced Raman spectroscopy is an important technique that have been used in different fields because of its high sensitivity, ability to produce distinct spectra from molecules of similar structure and function, and the elimination of expensive reagents or time-consuming sample preparation steps. Choice and fabrication of SERS substrates are the critical issues that due attention should be given. Thus, different methods have been reported in the preparation of noble metal nanostructures for SERS applications. In this work magnetic structures have been integrated with noble metal nanostructures and employed as SERS substrates for detection of biologically important species .In this thesis, the works are presented in five chapters. In the first chapter concepts related to Raman scattering, SERS, methods of preparation of SERS substrates, magnetic nanoparticles, and SERS applications are presented briefly. The second chapter deals with preparation of magnetic microspheres that are decorated with silver nanoparticles for SERS detection of nucleobases. For the preparation of the SERS substrates, initially the magnetic nanoparticles were prepared by coprecipitation of iron (II) and iron (III) solutions with subsequent suspension polymerization reaction of divinyl benzene and methyl methacrylate that resulted in a polymer coated magnetic microspheres. Photochemical reduction method was employed for the formation of AgNPs. To optimize the substrate para-Nitrothiophenol (pNTP) was used as a probe molecule. Further, the substrate was also used in detection of nucleobases in aqueous solution. In chapter three, preparation of gold decorated magnetic microspheres for SERS application is presented. Gold nanoparticles are easily attached to the magnetic microspheres by exposing the reaction mixture containing magnetic microspheres, HAuCl4, and trisodium citrate solutions with UV light. The formation and deposition of gold nanoparticles are confirmed by the SERS activity of the substrate, from the distinct SEM images of the gold nanoparticles and from the XRD patterns. The substrates prepared by the optimized conditions were applied for the determination of some nucleobases. Development of multifunctional hybrid structures comprising magnetic nanoparticles, ZnO, and silver nanocrystals for SERS determination of creatinine and uric acid are presented in chapter four. Precipitation of Zn (NO3)2 with NaOH in the presence of magnetic nanoparticles resulted in a composite structure having magnetic and catalytic properties. UV light exposure of the mixture containing AgNO3 solution (dissolved in ethylene glycol) and ZnO/Fe3O4 composite resulted in formation of silver nanocrystals onto the composite that owes optical property. Formations of these structures are confirmed from XRD and EDX data. To examine the performance of the prepared substrate for SERS activity, pNTP was used. The substrate also used to determine creatinine and uric acid in aqueous solutions as well as in urine. In the last chapter the concluding remarks for the work are given. Thus, in this work, magnetic structures have been used as a plat form to embed metallic nanostructures for SERS applications. Development of these hybrid structures based on magnetic structures offer properties that are basically important for SERS measurements that would have not been obtained only from a single component counterpart. The ease to collect the particles from the reaction mixture using magnet without centrifugation or filtration makes SERS measurements simple.
表面增強拉曼光譜(Surface-enhanced Raman spectroscopy, SERS)為重要的分析工具,主因乃它具有極佳的靈敏度以及能提供分子結構和官能基認定的能力。目前而言,SERS研究上較受到關注的方向包括SERS活性金屬的選擇與製備。為提升SERS的應用性,本研究主要利用貴重金屬奈米結構包附磁性物質,製備出高感度SERS材料並應用於檢測生物學中的重要的指標性分子。論文分為五個章節,分別陳述如下。 第一章介紹SERS原理並概述製備SERS基材與磁性奈米粒子的方法以及其在SERS上的應用。第二章探討以銀奈米粒子修飾過後之磁性微球的製備,並進一步應用到核酸鹼基的偵測。SERS基材的製備,是以二價鐵及三價鐵溶液的共沉澱來製備磁性奈米粒子,接下來隨著二乙烯基苯和甲基丙烯酸甲酯的懸浮聚合反應致使聚合物包覆磁性微球,再透過光化學還原法進一步修飾上是當型態的銀奈米金屬。透過量測4-硝基苯硫酚( p-NTP )的拉曼訊號,各種製備的影響因子能系統化探討與最佳化。另外,本研究進一步使用最佳化條件製備的奈米材料,成功檢測水溶液內的核酸鹼基。 第三章探討以金奈米粒子修飾過後之磁性微球的製備,並進一步應用到核酸鹼基的偵測。研究目的乃為降低銀奈米材的生化相容性疑慮,改以金奈米材取代銀奈米材。製備磁性微球方法與前一章相似,而金奈米材料之修飾乃透過以紫外光光還原法形成金奈米材於磁性微粒上,結果顯式,光還原法能成功修飾上金奈米粒子且具高附著性。製備出之金奈米粒子修飾磁性微球以電子顯微鏡與X-ray繞射儀檢定,並進一步與變動因子做相關性探討。最佳化條件下製備的材料基材能成功應用到核酸鹼基的測量上。 第四章為製備SERS複合奈米材料並應用到偵測肌酸酐與尿酸上,復合材料由磁性奈米粒子、氧化鋅和銀奈米晶體所組成。氧化鋅之使用能透過其光催化性,有效提升銀奈米粒之光合成,大幅提升光還原效率。復合材料之起始物乃先將Zn (NO3)2和NaOH反應凝結於磁性奈米粒子上,此複合材料具有磁性和催化的性質。將氧化鋅磁性複合材料置入硝酸銀乙二醇溶液中後,以UV光照射便能輕易形成含銀粒的新型複合SERS材料。合成出的複合材料均經過電子顯微鏡與x-ray繞射儀檢定,並進一步與變動因子做相關性探討。最佳化條件下製備的材料基材能成功應用到量測水或尿液中肌酸酐和尿酸的含量。 第五章將本論文之研究做綜合性討論與總結。
URI: http://hdl.handle.net/11455/90587
文章公開時間: 2017-03-25
顯示於類別:化學系所

文件中的檔案:
檔案 大小格式 
nchu-103-8099051005-1.pdf4.15 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。