Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90590
標題: Electrode-Assisted Liquid Phase Microextraction Combined with Liquid Chromatography-Tandem Mass Spectrometry for Analysis of Artificial Sweeteners in Water
電極輔助液相微萃取結合液相層析串聯質譜術於水中人工甜味劑之研究
作者: 林佑芯
Yu-Hsin Lin
關鍵字: artificial sweeteners
electrode-assisted
liquid phase microextraction
liquid chromatography-tandem mass spectrometry
人工甜味劑
電極輔助
液相微萃取
液相層析串聯質譜儀
引用: [1] Ordonez, E. Y.; Quintana, J. B.; Rodil, R.; Cela, R., Determination of artificial sweeteners in water samples by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2012, 1256, 197-205. [2] Kokotou, M. G.; Asimakopoulos, A. G.; Thomaidis, N. S., Artificial sweeteners as emerging pollutants in the environment: analytical methodologies and environmental impact. Anal. Methods 2012, 4, 3057-3070. [3] Lange, F. T.; Scheurer, M.; Brauch, H. J., Artificial sweeteners--a recently recognized class of emerging environmental contaminants: a review. Anal.Bioanal.Chem. 2012, 403, 2503-2518. [4] Mead, R. N.; Morgan, J. B.; Avery, G. B.; Kieber, R. J.; Kirk, A. M.; Skrabal, S. A.; Willey, J. D., Occurrence of the artificial sweetener sucralose in coastal and marine waters of the United States. Marine Chem. 2009, 116, 13-17. [5] Gan, Z.; Sun, H.; Wang, R.; Feng, B., A novel solid-phase extraction for the concentration of sweeteners in water and analysis by ion-pair liquid chromatography-triple quadrupole mass spectrometry. J.Chromatogr. A 2013, 1274, 87-96. [6] Chang, C.-S.; Yeh, T. S., Detection of 10 sweeteners in various foods by liquid chromatography/tandem mass spectrometry. J. Food Drug Anal. 2014, In press. [7] Zygler, A.; Wasik, A.; Namiesnik, J., Retention behaviour of some high-intensity sweeteners on different SPE sorbents. Talanta 2010, 82, 1742-1748. [8] Shankar, P.; Ahuja, S.; Sriram, K., Non-nutritive sweeteners: review and update. Nutrition 2013, 29, 1293-1299. [9] Kokotou, M. G.; Thomaidis, N. S., Determination of eight artificial sweeteners in wastewater by hydrophilic interaction liquid chromatography-tandem mass spectrometry. Anal. Methods 2013, 5, 3825-3833. [10] Lim, H.-S.; Park, S.-K.; Kwak, I.-S.; Kim, H.-I.; Sung, J.-H.; Jang, S.-J.; Byun, M.-Y.; Kim, S.-H., HPLC-MS/MS analysis of 9 artificial sweeteners in imported foods. Food Sci. Biotechnol. 2013, 22, 233-240. [11] Zygler, A.; Wasik, A.; Kot-Wasik, A.; Namiesnik, J., The content of high-intensity sweeteners in different categories of foods available on the Polish market. Food Addit. Contam. A 2012, 29, 1391-1401. [12] Koyama, M.; Yoshida, K.; Uchibori, N.; Wada, I.; Akiyama, K.; Sasaki, T., Analysis of Nine Kinds of Sweeteners in Foods by LC/MS. J. Food Hyg Soc. JPN. (Shokuhin Eiseigaku Zasshi) 2005, 46, 72-78. [13] Wasik, A.; McCourt, J.; Buchgraber, M., Simultaneous determination of nine intense sweeteners in foodstuffs by high performance liquid chromatography and evaporative light scattering detection--development and single-laboratory validation. J. Chromatogr. A 2007, 1157, 187-196. [14] Scheurer, M.; Brauch, H. J.; Lange, F. T., Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT). Anal. Bioanal. Chem, 2009, 394, 1585-1594. [15] Zygler, A.; Wasik, A.; Kot-Wasik, A.; Namiesnik, J., Determination of nine high-intensity sweeteners in various foods by high-performance liquid chromatography with mass spectrometric detection. Anal. Bioanal. Chem. 2011, 400, 2159-2172. [16] 李茂榮。「低能量碰撞誘導解離之串聯質譜儀」。質譜分析技術專輯,民國91年,行政院國家科學委員會精密儀器發展中心編印,頁87-111。 [17] Yamashita, M.; Fenn, J. B., Electrospray Ion Source. Another Varliation on the Free-Jet Theme. J. Phys. Chem., 1984, 88, 4451-4459. [18] B?Kman, C. F. ,Analytical aspects of atmospheric pressure ionizationin mass spectrometry, 2002, Uppsala University. [19] FinniganTM H-ESITM Probe User Guide, 2009, p.2. [20] Hdmond de Hoffmann, V.S. Mass Spectrometry Principles and Application, 3rd ed., John Eiley & Sons Ltd, West Sussex, England, 2007 [21] Smith, R. M., Before the injection—modern methods of sample preparation for separation techniques. J. Chromatogr. A 2003, 1000, 3-27. [22] Sarafraz-Yazdi, A.; Amiri, A., Liquid-phase microextraction. TrAC 2010, 29, 1-14. [23] Pedersen-Bjergaard, S.; Rasmussen, K. E., Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal. Chem. 1999, 71, 2650-2656. [24] E. Psillakis, N. Kalogerakis, TrAC 2003, 22, 565–574. [25] Ho, T. S.; Pedersen-Bjergaard, S.; Rasmussen, K. E., Recovery, enrichment and selectivity in liquid-phase microextraction. J. Chromatogr. A 2002, 963, 3-17. [26] Pedersen-Bjergaard, S.; Rasmussen, K. E., Electrokinetic migration across artificial liquid membranes. New concept for rapid sample preparation of biological fluids. J. Chromatogr. A 2006, 1109, 183-190. [27] Morales-Cid, G.; C?rdenas, S.; Simonet, B. M.; Valc?rcel, M., Sample treatments improved by electric fields. TrAC 2010, 29, 158-165. [28] Krishna Marothu, V.; Gorrepati, M.; Vusa, R., Electromembrane extraction--a novel extraction technique for pharmaceutical, chemical, clinical and environmental analysis. J Chromatogr. Sci. 2013, 51, 619-631. [29] Jamt, R. E.; Gjelstad, A.; Eibak, L. E.; Oiestad, E. L.; Christophersen, A. S.; Rasmussen, K. E.; Pedersen-Bjergaard, S., Electromembrane extraction of stimulating drugs from undiluted whole blood. J. Chromatogr. A 2012, 1232, 27-36. [30] Yamini, Y.; Seidi, S.; Rezazadeh, M., Electrical field-induced extraction and separation techniques: promising trends in analytical chemistry--a review. Anal. Chim. Acta 2014, 814, 1-22. [31] Gjelstad, A.; Rasmussen, K. E.; Pedersen-Bjergaard, S., Simulation of flux during electro-membrane extraction based on the Nernst-Planck equation. J. Chromatogr. A 2007, 1174, 104-111. [32] Pedersen-Bjergaard, S.; Rasmussen, K. E., Electrical potential can drive liquid-liquid extraction for sample preparation in chromatography. TrAC 2008, 27, 934-941. [33] Miao, X. S.; Koenig, B. G.; Metcalfe, C. D., Analysis of acidic drugs in the effluents of sewage treatment plants using liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A 2002, 952, 139-147.
摘要: This study is to propose a novel method for determination of trace artificial sweeteners in water samples using electrode-assisted liquid phase microextraction combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In sample pretreatment, the hollow fiber was immersed into octanol, and then into 30 μL of acceptor phase of 100 mM ammonium solution. The ends of hollow fibers were connected to the anodic electrode, was fixed in the cap of vial by reversed U shape. With stirring speed of 600 rpm, the voltage of 100V was applied during 10 min extraction time, and seven artificial sweeteners were extracted from 15 mL aqueous sample solutions at pH 8 into the acceptor solution. After neutralized with 0.5 μL acetic acid, the extract were analyzed by LC-MS/MS. The linearity range was 0.05-50 ?g/L for acesulfame potassium, 0.625-125 ?g/L for sodium saccharin, 0.25-100 ?g/L for sodium cyclamate, 10-500 ?g/L for sucralose, 1-100 ?g/L for aspartame, 1.25-250 ?g/L for dulcin, and 0.0625-25 ?g/L for neotame. The coefficient of determination were obtained above 0.9936. Limits of detection (LODs) and limits of quantitation (LOQs) of seven artificial sweeteners were between 0.1 - 167 ng/L and 0.4 - 466 ng/L, respectively. The relative standard deviations of intra-day and inter-day precisions were 1.6 - 15.3% and 5.3 - 16.6% and the recovery range from 91.6 % - 117.4 %. The method proposed was applied for the determination of trace artificial sweeteners in environmental waters of Taichung area and the results showed the trace of acesulfame potassium and sodium cyclamate were detected in the range of 1 - 5.2 μg/L. The proposed method is successfully applied to analyze trace artificial sweeteners in water.
本研究利用電極輔助液相微萃取技術 (electrode-assisted liquid phase microextraction) 結合液相層析串聯質譜術 (liquid chromatography-tandem mass spectrometry, LC-MS/MS) 之選擇反應偵測模式進行水中七種人工甜味劑 acesulfame potassium、sodium saccharin、sodium cyclamate、sucralose、aspartame、dulcin 與neotame 之檢測。研究中探討萃取溶劑濃度、樣品溶液 pH 值、電壓強度、萃取時間、NaCl 添加?、攪拌速率等電極輔助液相微萃取之參數。結果顯示,樣品溶液調整為 pH 8,中空纖維浸泡 octanol 後,注入30 μL之100 mM 氨水作為萃取溶劑。正極以倒 U 之形式固定於樣品瓶並接上中空纖維兩端,負極固定並插入樣品溶液中。於轉速 600 rpm 下,施加電壓 100V,萃取 10 分鐘,能得最佳之萃取效率。所得七種人工甜味劑之線性範圍分別為 0.05-50 ?g/L、0.625-125 ?g/L、0.25-100 ?g/L、10-500 ?g/L、1-100 ?g/L、1.25-250 ?g/L 與 0.0625-25 ?g/L,線性相關係數 (R2) 均在0.9936 以上。所開發方法之偵測與定量極限分別介於 0.1 - 167 ng/L 及 0.4 - 566 ng/L 之間,同日間與異日間精密度以相對標準偏差 (%) 表示,分別介於 1.6 - 15.3 % 與 5.3 - 16.6 % 之間,回收率為 91.6 - 117.4 % 之間。此分析方法具有使用有機溶劑量少、步驟簡便快速、高偵測靈敏度等特點,且針對離子性物質具有高度之選擇性。應用於真實樣品之分析,可測得河川水以及湖水中含有 1 - 5.2 μg/L 之 acesulfame potassium 與sodium cyclamate,本方法可做為水中人工甜味劑檢測方法之參考。
URI: http://hdl.handle.net/11455/90590
文章公開時間: 10000-01-01
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.