Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90599
標題: Facile preparation of highly stable copper/carbon composited nanomaterials combine with SPCE for electroanalytical applications
高穩定奈米銅/碳複合材料製備結合網版印刷碳電極於電分析化學應用之研究
作者: 廖世豪
Shi-Hao Liao
關鍵字: copper/carbon composited nanomaterials
screen-printed carbon electrode
hydrogen peroxide
electrochemical sensor
奈米銅碳複合材料
網版印刷碳電極
雙氧水
電化學感測器
引用: 1. Bahareh Khodashenas, Hamid Reza Ghorbani., Korean J. Chem. Eng., 2014, 31,1105–1109. 2. G.A. Patil, M.L. Bari, B.A. Bhanvase, Vivek Ganvir, S. Mishra, S.H. Sonawane., Chemical Engineering and Processing:Process Intensification., 2012, 62, 69–77. 3. Szu-Han Wu, Dong-Hwang Chen., Colloid and Interface Science., 2004, 273, 165–169. 4. Thi My Dung Dang, Thi Tuyet Thu Le, Eric Fribourg-Blanc, Mau Chien Dang., ADVANCES IN NATURAL SCIENCES: NANOSCIENCE AND NANOTECHNOLOGY., 2011, 2, 15009–15014. 5. Anni Zhong, Xiaoli Luo, Liping Chen, ShanshanWei, Yonghong Liang, Xinchun Li., Microchim Acta., 2015, 182, 1197–1204. 6. Wang Zhang, Bo Quan, Chaedong Lee, Seung-Keun Park, Xinghe Li, Eunjin Choi, Guowang Diao, Yuanzhe Piao., Applied Materials and Interfaces., 2015, 7, 2404–2414. 7. Arunachalam Dinesh Karthik, Kannappan Geetha., Applied Pharmaceutical Science., 2013, 3, 16–21. 8. Ding Jiang, Qian Liu, Kun Wang, Jing Qian, Xiaoya Dong, Zhenting Yang, Xiaojiao Du, Baijing Qiu., Biosensors and Bioelectronics., 2014, 54, 273–278. 9. Yoshio Kobayashi, Satoshi Ishida, Kazuaki Ihara, Yusuke Yasuda, Toshiaki Morita, Shinji Yamada., Colloid Polym Sci., 2009, 287, 877–880. 10. Jonathan J. Brege, Christopher E. Hamilton, Christopher A. Crouse, Andrew R. Barron., American Chemical Society., 2009, 9, 2239–2242. 11. Nattaporn Leelaviwat, Siriporn Monchayapisut, Chantamanee Poonjarernsilp, Kajornsak Faungnawakij, Kyo-Seon Kim, Tawatchai Charinpanitkul., Current Applied Physics., 2012, 12 ,1575–1579. 12. D. Longano, N. Ditaranto, N. Cioffi, F. Di Niso, T. Sibillano, A. Ancona, A. Conte, M. A. Del Nobile, L. Sabbatini, L. Torsi., Anal Bioanal Chem., 2012, 403, 1179–1186. 13. Junjie Jing, GaoyuanChen, WenhuaLi,JiminXie, MingmeiZhang., Materials Letters., 2014, 114, 180–183. 14. J. Jayaprakash, N. Srinivasan, P. Chandrasekaran, E.K. Girija., Spectrochimica Acta., 2015, 136, 1803–1806. 15. Aditya Sharma, Mayora Varshney, Jaehun Park, Tae-Kyun Ha, Keun-Hwa Chaeb, Hyun-Joon Shin., RSC Advances., 2015, 5, 21762–21771. 16. 衛生福利部食品藥物管理署,各類食品中毒原因介紹。 17. Phlllppe E. A. Boudevllle., Anal. Chem., 1983, 55, 612–615. 18. Zhang Qian, Fu Shi-yu, Li Hai-long, Zhan Huai-yu., SPECTROSCOPY AND SPECTRAL ANALYSIS., 2014, 34,767–770. 19. Yang X, Guo Y, Mei Z., Anal Biochem., 2009, 393, 56–61. 20. Pascal Gimeno, Claudine Bousquet, Nelly Lassu, Annie-Francoise Maggio, Corinne Civade, Charlotte Brenier, Laurent Lempereur., Journal of Pharmaceutical and Biomedical Analysis., 2015, 107, 386–393. 21. Haiyan Song, Yongnian Ni, Serge Kokot., Microchim Acta., 2013, 180, 1263–1270. 22. Shihong Chen, Ruo Yuan, Yaqin Chai, Fangxin Hu., Microchim Acta., 2013, 180, 15–32. 23. Yi Xiao, Huang-Xian Ju, Hong-Yuan Chen., Analytica Chimica Acta., 1999, 391, 73–82. 24. Wenjuan Li, Ruo Yuan,z Yaqin Chai, Chenglin Hong, Ying Zhuo., The Electrochemical Society., 2008, 155, 97–103. 25. Xiaoshan He, Chenguo Hu, Hong Liu, Guojun Du, Yi Xi, Youfei Jiang., Sensors and Actuators B: Chemical., 2010, 144, 289–294. 26. Kuan-Jung Chen, Chia-Feng Lee, John Rick, Shih-Han Wang, Chung-Chiun Liu, Bing-Joe Hwang., Biosensors and Bioelectronics., 2012, 33, 75–81. 27. Min-Jung Song, Sung Woo Hwang, Dongmok Whang., Talantao., 2010, 80, 1648–1652. 28. Jianfeng Ping, Shiping Ru, Kai Fan, Jian Wu, Yibin Ying., Microchim Acta., 2010, 171, 117–123. 29. Habib Razmi, Hojjat Nasiri., Electroanalysis., 2011, 7, 1691–1698. 30. Shaohuang Weng, Yanjie Zheng, Chengfei Zhao, Jianzhang Zhou, Liqing Lin, Zongfu Zheng, Xinhua Lin., Microchim Acta., 2013, 180, 371–378. 31. Peng Gao, Dawei Liu., Sensors and Actuators B: Chemical., 2015, 208, 346–354. 32. Ali A. Ensafi, N. Zandi-Atashbar, M. Ghiaci, M. Taghizadeh, B. Rezaei., Materials Science and Engineering C., 2015, 47, 290–297. 33. 魏瑋琤,國立中興大學化學系碩士論文,101年。 34. 陳玉儒,國立中興大學化學系博士論文,104年。 35. Mamas I. Prodromidis, Ageliki B. Florou, Stella M. Tzouwara-Karayanni, Miltiades I. karayannis*., Electroanalysis., 2000, 18, 1498-1501. 36. Jyh-Myng Zen, Hsieh-Hsun Chung, Annamalai Senthil Kumar., Analyst., 2000, 125, 1633–1637. 37. 林格吟,國立中興大學化學系碩士論文,93年。 38. 鍾協訓,國立中興大學化學系博士論文,91年。
摘要: Electrochemical exfoliated carbon nanoparticles (~2 nm) containing carbonyl, carboxylic acid, and hydroxyl groups was used to prepare a novel copper/carbon composited nanomaterials (Cu-CD@CNs) by simple chemical reduction method. The Cu-CD@CNs possesses a fairly good long-term stability for more than 140 days. Furthermore, the Cu-CD@CNs was drop-coated on screen-printed carbon electrode (SPCE) for electrochemical analysis.   First of all, we optimize the manufacture condition of materials and the modified condition of electrode. Then use the amperometric analysis determination of hydrogen peroxide as an indicator, the novel modified electrode (Cu-CD@CNs-SPCE) showing better performance at sensitivity and long-term stability of materials than plating copper electrode. In order to improve the manufacturing process of modified electrode, the Cu-CD@CNs was combined with nafion and ethanol to fabricate stable slurry. The flow injection analysis of hydrogen peroxide by using Cu-CD@CNs-slurry modified SPCE shows a wide linear calibration range from 1 μM to 10 mM with a regression coefficient of 0.9988 under optimal conditions of a detection potential of –0.20 V (vs. Ag/AgCl) and a flow rate 0.6 mL/min. The detection limit was calculated as 334 nM (S/N = 3). The as-prepared electrode has good reproducibility (n = 10, RSD = 3.41%) and detection stability (RSD < 5%, n = 10). Moreover the proposed system was tolerable to other co-existing interferents, such as common cations (Na+, K+) and anions (HCO3–, ClO4–, SO42–, NO3–, OH–).
本研究是以奈米銅化學為主軸,結合具有各種碳氧官能基 (–COOH、–COH、–C=O) 的奈米碳粒子,在未添加額外之穩定劑與分散劑下,以簡便的化學還原法製備出具有高穩定度的新型奈米銅/碳複合材料,並搭配網版印刷碳電極進行各種電化學分析上的開發與應用。首先探討以具有高穩定度和良好分散性的奈米碳粒子 (~2 nm) 作為載體所製備出的奈米銅/碳複合材料,其在製備條件與修飾方法上的最佳化條件,接著以電化學催化雙氧水之還原反應作為判定指標,利用安培法 (Amperometry, i-t curve) 進一步比較奈米銅/碳複合材料修飾電極與銅網版印刷電極在電化學分析上的差異。由研究結果可得知奈米銅/碳複合材料可於室溫下保存長達140天,且對應之雙氧水分析靈敏度相較於銅網版印刷電極高約1.5倍。為提升其應用性,進一步將奈米銅/碳複合材料結合Nafion與乙醇調配出一具有良好分散性且可快速製備修飾電極的新型漿料,並結合流動注入分析系統 (Flow injection analysis, FIA) 來進行雙氧水的偵測,在最佳化條件 (施加電位= –0.20 V, 動相流速= 0.6 mL/min) 下進行定量與定性之檢測,發現其可不受各種常見之陰陽離子 (Na+, K+, CO32–, ClO4–, SO42–, NO3–, OH–) 的干擾,且對雙氧水偵測的線性範圍在0.1 M PBS pH = 7中為1 μM–10 mM (r = 0.9988),最低偵測極限為334 nM (S/N = 3),並且在電極再現性 (RSD = 3.41%, n = 10)、偵測穩定性 (RSD < 5%, n = 10) 與漿料長效性 (靜置100天, RSD = 2.51%, n = 7) 上皆有良好的表現。
URI: http://hdl.handle.net/11455/90599
文章公開時間: 2018-07-08
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.