Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90600
標題: The Development and Application of Portable Gaseous Formaldehyde Sensor
高靈敏可攜式甲醛氣體感測器之研發與應用
作者: 李佩芸
Pei-Yun Lee
關鍵字: Formaldehyde
Gas sensor
甲醛
氣體感測器
引用: (1) 周瑞福. 氣體感測器原理與應用. (2) Ogumi, Z.; Kuroe, T.; Takehara, Z. i. J. Electrochem. Soc 1985, 132, 2601-2605. (3) Anantaraman, A. V.; Gardner, C. L. Journal of Electroanalytical Chemistry 1996, 414, 115-120. (4) 古寧宇; 董紹俊. 超微電極的新進展 2001. (5) 郭清癸; 黃俊傑; 牟中原. 金屬奈米粒子的製造 2001. (6) Luong, S. H. Y. L. K. B. M. J. H. T. Anal. Chem 2003, 76, 1083-1088. (7) 王建楠; 吳重達. 室內環境品質之健康效應 2005. (8) 陳震宇. 室內木質建材甲醛逸散之研究 2001. (9) 行政院環保署 - 排放管道中甲醛標準檢測方法 - 高效能液相層析 法 1997. (10) 林郁芯; 金文森. 綠建材及室內空氣品質之研究 2010. (11) 行政院環保署 - 排放管道中甲醛標準檢測方法 -高效能液相層析 法 2007. (12) 行政院環保署 - 排放管道中甲醛標準檢測方法-比色法 2000. (13) West, G. B. F. R. J. Am. Chem. Soc 1905, 27, 714-719. (14) Craig, A. G. J. Am. Chem. Soc 1901, 638-643. (15) Johnson, C. E. B. H. R. Ind. Eng. Chem. Anal 1945, 17, 400-402. (16) Slawinski, D. S. J. Anal. Chem 1975, 47, 2101-2109. (17) Nash, T. Biochem J 1953, 55, 416-421. (18) Bachmann, K. F. T. R. K. J. Chromatogr. A 1996, 730, 333-336. (19) Hall, M. H. E. A. H. Biosensors and Bioelectronics 1996, 11, 239-246. (20) Johnson, S. B. J. C. M. T. T. E. L. D. C. Anal. Chem 1999. (21) Yan, Z.-Y. G. G. W. X.-P. Anal. Chem 2010, 82, 1365-1370. (22) Li, S.; Li, F.; Rao, Z. Sensors and Actuators B: Chemical 2010, 145, 78-83. (23) Xu, X.; Su, R.; Zhao, X.; Liu, Z.; Li, D.; Li, X.; Zhang, H.; Wang, Z. Talanta 2011, 85, 2632-2638. (24) Jin, G.-P.; Li, J.; Peng, X. Journal of Applied Electrochemistry 2009, 39, 1889-1895. (25) Chou, C.-H.; Chang, J.-L.; Zen, J.-M. Sensors and Actuators B: Chemical 2010, 147, 669-675. (26) 林彥均; 諸柏仁. 奈米複合觸媒於質子交換型燃料電池之應用 2006. (27) 陳介武. 生質柴油帶來新的低價工業原料─甘油. (28) 鄭建銘; 何佳安; 吳立真. 研發甘油及三酸甘油酯之生化感應器 2005. (29) Antonis, D. M. A. The Journal of Lipid Research 1961, 2, 45-50. (30) Amerine, C. S. O. D. F. M. A. Am. J. Enol. Vitic 1972, 23, 1-5. (31) Hajek, M.; Skopal, F.; Machek, J. European Journal of Lipid Science and Technology 2006, 108, 666-669. (32) Goncalves Filho, L. C.; Micke, G. A. Journal of chromatography. A 2007, 1154, 477-480. (33) Engstrom, A. R. T. L. A. K. J. A. S. R. G. The Journal of Lipid Research 1968, 9. (34) Macaloney, J. W. H. B. M. M. J. R. I. D. B. G. T. G. Applied Spectroscopy 1996, 50, 102-108. (35) Luetkmeyer, T.; dos Santos, R. M.; da Silva, A. B.; Amado, R. S.; de Castro Vieira, E.; D'Elia, E. Electroanalysis 2010, 22, 995-999. (36) M.A. Tehrani, R.; Ab Ghani, S. Electrochimica Acta 2012, 70, 153-157. (37) Chen, G.; Li, Y.; Wang, D.; Zheng, L.; You, G.; Zhong, C.-J.; Yang, L.; Cai, F.; Cai, J.; Chen, B. H. Journal of Power Sources 2011, 196, 8323-8330. (38) 陳威成. 奈米白金超微電極於電化學氣體雙氧水感測器之研發與 應用 2011. (39) 謝志誠. 生質柴油之品質與檢驗 2007. (40) Silva, S. G.; Rocha, F. R. Talanta 2010, 83, 559-564. (41) Dorado, S. P. I. L. G. F. J. L.-G. M. D. L. d. C. G. D. M. P. Energy Fuels 2009, 23, 2325-2341. (42) Bondioli, P.; Della Bella, L. European Journal of Lipid Science and Technology 2005, 107, 153-157. (43) Lima, M. B.; Insausti, M.; Domini, C. E.; Pistonesi, M. F.; de Araujo, M. C.; Band, B. S. Talanta 2012, 89, 21-26.
摘要: In this study, we developed diverse electrochemical sensors based on electrodeposited various catalytic metal nanoparticles on a screen-printed edge band carbon ultramicroelectrode (SPUME) with Nafion as the solid polymer electrolyte. Uniform and well-dispersed metal-nanoparticles are well deposited on the SPUME without either protective or capped agents due to the edge diffusion effect at the SPUME. First part of this study was the development of portable gaseous formaldehyde amperometric sensor using the NPtRu-SPUME. The role of Ru was to protect the Pt from the poison of absorption of carbon monoxide. This developed gas sensing method for determination of formaldehyde showed a wide linear range from 25.4 ppb to 3.68 ppm, a very low detection limit of 1.42 ppb (S/N = 3) and excellent selectivity. Second, glycerol sensor based on the gaseous formaldehyde sensor has developed. The concentration of glycerol was determined indirectly by reacting glycerol with periodate to produce formaldehyde and formic acid. We used NAu-PtRu-SPUME here to dramatically enhance the sensitivity of glycerol determination. The developed method was successfully applied to identify the purity of glycerol in biodiesel. Overall, the glycerol sensor was found to be extremely highly sensitive and selective. Finally, we used lipase to indirectly quantified triglyceride concentration by glycerol sensing method.
本論文以實驗室開發之網版印刷超微碳電極為工作平台,搭配簡單快速之電化學還原法製作奈米催化材料並塗佈上固態電解質(Nafion)發展為感測器。藉由超微電極特有之邊緣擴散效應提升電子與物質傳遞速率,使本研究不須額外添加任何保護試劑即可電沉積粒徑大小均一且分布均勻之奈米金屬粒子,大幅提升修飾金屬電催化性,此外,更因超微電極之低背景電流可提升雜訊比而有助於電化學分析之應用。在本研究Nafion 之角色為固態電解質之氣體穿透薄膜,幫助電子傳導至電極表面,結合上述要件並搭配偵測系統裝置便成功開發具高靈敏度和高選擇性之氣體感測器。研究分為三部分,首先為甲醛氣體感測器之開發,將實驗室先前的研究改良,修飾鉑釕奈米粒子於超微電極以去除一氧化碳毒化,成功地使用安培法於空氣環境下連續偵測,實驗結果具優良之線性、重複性、選擇性且符合法定規範值,可期望被發展為可攜式甲醛氣體感測器。第二部分以甲醛感測器為出發點,利用過碘酸將甘油降解為甲醛、甲酸而間接定量,成功開發甘油感測器,其中加入奈米金作為載體提升感測器靈敏性與奈米金屬分散性。實驗結果顯示此方法具優良線性與靈敏度,將其應用於生質柴油真實樣品之檢測,實驗中完全不需經萃取、衍生化或分離等前處理,就可得良好回收率。第三部分為未來展望,欲以甘油感測器為基礎利用脂肪酶將三酸甘油脂分解為甘油並間接定量之,實驗結果得到線性之趨勢,證實可利用此連鎖反應式間接定量三酸甘油脂,期望未來可將其發展為可攜式生化感測器。
URI: http://hdl.handle.net/11455/90600
文章公開時間: 2017-07-02
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.