Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90623
標題: Analysis of Four Parabens in Cosmetic Sample with In-Tip Monolithic Molecularly Imprinted Solid Phase Extraction and HPLC-UV
以移液管尖頭整體柱分子印模固相萃取結合HPLC-UV分析化妝品中四種 Parabens含量
作者: 詹佳蓉
Chia-Jung Chan
關鍵字: Monolithic molecular imprinted polymer
Parabens
Cosmetic
Solid phase extraction
HPLC-UV
整體柱分子印模聚合物
Parabens
化妝品
分子印模固相萃取
HPLC-UV
引用: 1. González-Mariño, I.; Quintana, J. B.; Rodríguez, I.; Cela, R., Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate mass liquid chromatography- quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS). Water Research 2011, 45 (20), 6770-6780. 2. Soni, M. G.; Taylor, S. L.; Greenberg, N. A.; Burdock, G. A., Evaluation of the health aspects of methyl paraben: a review of the published literature. Food and Chemical Toxicology 2002, 40 (10), 1335-1373. 3. Kreuz, D. M.; Howard, A. L.; Ip, D., Determination of indinavir, potassium sorbate, methylparaben, and propylparaben in aqueous pediatric suspensions. Journal of Pharmaceutical and Biomedical Analysis 1999, 19 (5), 725-735. 4. Farajzadeh, M. A.; Djozan,D.; Bakhtiyari, R. F., Use of a capillary tube for collecting an extraction solvent lighter than water after dispersive liquid–liquid microextraction and its application in the determination of parabens in different samples by gas chromatography—Flame ionization detection. Talanta 2010, 81 (4–5), 1360-1367. 5. Sapira, J. D., The narcotic addict as a medical patient. The American Journal of Medicine 1968, 45 (4), 555-588. 6. Mowad, C. M., Allergic contact dermatitis caused by parabens: 2 case reports and a review. American Journal of Contact Dermatitis 2000, 11 (1), 53-56. 7. Winter, R., A consumer's dictionary of cosmetic ingredients: complete information about the harmful and desirable ingredients found in cosmetics and cosmeceuticals. Harmony; 7 Original edition 2009,578. 8. Odum, J.; Lefevre, P. A.; Tittensor, S.; Paton, D.; Routledge, E. J.; Beresford, N. A.; Sumpter, J. P.; Ashby, J., The Rodent Uterotrophic Assay: Critical Protocol Features, Studies with Nonyl Phenols, and Comparison with a Yeast Estrogenicity Assay. Regulatory Toxicology and Pharmacology 1997, 25 (2), 176-188. 9. Boberg, J.; Taxvig, C.; Christiansen, S.; Hass, U., Possible endocrine disrupting effects of parabens and their metabolites. Reproductive Toxicology 2010, 30 (2), 301-312. 10. Harvey, P. W.; Everett, D. J., Parabens detection in different zones of the human breast: consideration of source and implications of findings. Journal of Applied Toxicology 2012, 32 (5), 305-309. 11. Ramírez, N.; Marcé, R. M.; Borrull, F., Development of a thermal desorption-gas chromatography–mass spectrometry method for determining personal care products in air. Journal of Chromatography A 2010, 1217 (26), 4430-4438. 12. Iscaguard○RFPX, Preservatives for Personal Care. 13. Soni, M. G.; Carabin, I. G.; Burdock, G. A., Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food and Chemical Toxicology 2005, 43 (7), 985-1015. 14. Lee, M. R.; Lin, C. Y.; Li, Z. G.; Tsai, T. F., Simultaneous analysis of antioxidants and preservatives in cosmetics by supercritical fluid extraction combined with liquid chromatography–mass spectrometry. Journal of Chromatography A 2006, 1120 (1), 244-251. 15. Okubo, T.; Yokoyama, Y.; Kano, K.; Kano, I., ER-dependent estrogenic activity of parabens assessed by proliferation of human breast cancer MCF-7 cells and expression of ERα and PR. Food and Chemical Toxicology 2001, 39 (12), 1225-1232. 16. Gagliardi, L.; Amato, A.; Basili, A.; Cavazzutti, G.; Gattavecchia, E.; Tonelli, D., Determination of preservatives in cosmetic products by reversed-phase high-performance liquid chromatography. Journal of Chromatography A 1984, 315 (0), 465-469. 17. Youngvises, N.; Chaida , T.; Khonyoung, S.; Kuppithayanant, N.; Tiyapongpattana, W.; Itharat, A.; Jakmunee, J.; Greener liquid chromatography using a guard column with micellar mobile phase for separation of some pharmaceuticals and determination of parabens. Talanta 2013, 106 (0), 350-359. 18. Mincea, M.; Lupsa, I.; Talpos, I.; Ostafe, V., UPLC analysis of common parabens in cosmetic products. Acta Chromatogr. 2009, 21 (4), 591–602. 19. Fei, Ting; Li, Haifang; Ding, Mingyu; Ito, M.; Lin, Jin-Ming, Determination of parabens in cosmetic products by solid-phase microextraction of poly(ethylene glycol) diacrylate thin film on fibers and ultra high-speed liquid chromatography with diode array detector. Journal of Separation science 2011, 21 (4), 1599–1606. 20. Melo, L. P.; Queiroz, M. E. C., Simultaneous analysis of parabens in cosmetic products by stir bar sorptive extraction and liquid chromatography. Journal of Separation science 2010, 33 (12), 1849–1855. 21. Ҫabuk, H.; Akyüz, M.; Ata, Ş., A simple solvent collection technique for a dispersive liquid–liquid microextraction of parabens from aqueous samples using low-density organic solvent. Journal of Separation science 2012, 35 (19), 2645–2652. 22. Díaz-Álvareza, M.; Turiela, E.; Martín-Esteban, A., Hollow fiber liquid-phase microextraction of parabens from environmental waters. International Journal of Environmental Analytical Chemistry 2013, 93 (7), 727–738. 23. Ebrahimpour, B.; Yamini, Y.; Esrafili, A., Emulsification liquid phase microextraction followed by on-line phase separation coupled to high performance liquid chromatography. Analytica Chimica Acta 2012, 751 (0), 79-85. 24. Farajzadeh, M. A.; Khosrowshahi, E. M.; Khorram, P. Simultaneous derivatization and air-assisted liquid–liquid microextraction of some parabens in personal care products and their determination by GC with flame ionization detection. Journal of Separation science 2013, 36 (21-22), 3571–3578. 25. Saraji, M.; Mirmahdieh, S., Single-drop microextraction followed by in-syringe derivatization and GC-MS detection for the determination of parabens in water and cosmetic products. Journal of Separation science 2009, 32 (7), 988–995. 26. Ramírez, N.; Marcé, R. M., Determination of parabens in house dust by pressurised hot water extraction followed by stir bar sorptive extraction and thermal desorption–gas chromatography–mass spectrometry. Journal of Chromatography A 2011, 1218 (37), 6226–6231. 27. Uysal, U. D.; Güray, T., Determination of parabens in pharmaceutical and cosmetic products by capillary electrophoresis. Journal of Analytical Chemistry 2008, 63 (10), 982-986. 28. Han, F.; He, Y. Z.; Yu, C.Z., On-line pretreatment and determination of parabens in cosmetic products by combination of flow injection analysis, solid-phase extraction and micellar electrokinetic chromatography. Talanta 2008, 74 (5), 1371–1377. 29. Labat, L.; Kummer, E.; Dallet, P.; Dubost, J. P., Comparison of high-performance liquid chromatography and capillary zone electrophoresis for the determination of parabens in a cosmetic product. Journal of Pharmaceutical and Biomedical Analysis 2000, 23 (4), 763-769. 30. Núñez, L.; Tadeo, J. L.; García-Valcárcel, A. I.; Turiel, E., Determination of parabens in environmental solid samples by ultrasonic-assisted extraction and liquid chromatography with triple quadrupole mass spectrometry. Journal of Chromatography A 2008, 1214 (1–2), 178-182. 31. Yang, T.-J.; Tsai, F.-J.; Chen, C.-Y.; Yang, T. C.-C.; Lee, M.-R., Determination of additives in cosmetics by supercritical fluid extraction on-line headspace solid-phase microextraction combined with gas chromatography–mass spectrometry. Analytica chimica acta 2010, 668 (2), 188-194. 32. González, M.; Gallego, M.; Valcárcel, M., Gas chromatographic flow method for the preconcentration and simultaneous determination of antioxidant and preservative additives in fatty foods. Journal of Chromatography A 1999, 848 (1–2), 529-536. 33. Żwir-Ferenc, A.; Biziuk, M., Solid phase extraction technique–trends, opportunities and applications. Polish Journal of Environmental Studies 2006, 15 (5), 677-690. 34. Lee, H.-B.; Peart, T. E.; Svoboda, M. L., Determination of endocrine- disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography–mass spectrometry. Journal of Chromatography A 2005, 1094 (1–2), 122-129. 35. Márquez-Sillero, I.; Aguilera-Herrador, E.; Cárdenas, S.; Valcárcel, M., Determination of parabens in cosmetic products using multi-walled carbon nanotubes as solid phase extraction sorbent and corona-charged aerosol detection system. Journal of Chromatography A 2010, 1217 (1), 1–6. 36. Tahmasebi, E.; Yamini, Y.; Mehdinia, A.; Rouhi, F., Polyaniline-coated Fe3O4 nanoparticles: An anion exchange magnetic sorbent for solid-phase extraction. Journal of Separation science 2012, 35(17), 2256–2265. 37. Núnez, L.; Turiel , E.; Martin-Esteban, A.; Tadeo, J. L., Molecularly imprinted polymer for the extraction of parabens from environmental solid samples prior to their determination by high performance liquid chromatography–ultraviolet detection. Talanta 2010, 80 (5), 1782–1788. 38. Sellergren, B., Molecularly Imprinted Polymers: Man-Made Mimics of Antibodies and Their Applications in Analytical Chemistry. Elsevier Amsterdam, 2000, 23,582. 39. Pauling, L., A theory of the structure and process of formation of antibodies. Journal of the American Chemical Society 1940, 62(10), 2643-2657. 40. Fischer, E., Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft 1894, 27 (3), 2985-2993. 41. Mosbach, K.; Vlatakis, G.; Andersson, L. I.; Muller, R., Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361(6413), 645-647. 42. Yan, M., Molecularly imprinted materials: science and technology. CRC press 2004, 752. 43. Qiao, F.; Sun, H.; Yan, H.; Row, K. H., Molecularly imprinted polymers for solid phase extraction. Chromatographia 2006, 64 (11-12), 625-634. 44. Komiyama, M.; Takeuchi, T.; Mukawa, T.; Asanuma, H., Molecular imprinting: from fundamentals to applications. Wiley-VCH 2003, 1 (0),148. 45. Wulff, G.; Grobe‐Einsler, R.; Vesper, W.; Sarhan, A., Enzyme‐analogue built polymers, 5. On the specificity distribution of chiral cavities prepared in synthetic polymers. Die Makromolekulare Chemie 1977, 178 (10), 2817-2825. 46. Arshady, R.; Mosbach, K., Synthesis of substrate‐selective polymers by host‐guest polymerization. Die Makromolekulare Chemie 1981, 182 (2), 687-692. 47. Vlatakis, G.; Andersson, L. I., Drug assay using antibody mimics made by molecular imprinting. Nature: International weekly journal of science 1993, 361 (6413), 645-647. 48. Whitcombe, M. J.; Rodriguez, M. E.; Villar, P.; Vulfson, E. N., A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol. Journal of the American Chemical Society 1995, 117 (27), 7105-7111. 49. Kim, H.; Spivak, D. A., New insight into modeling non-covalently imprinted polymers. Journal of the American Chemical Society 2003, 125 (37), 11269-11275. 50. Yan, H.; Row, K. H., Characteristic and synthetic approach of molecularly imprinted polymer. International journal of molecular sciences 2006, 7 (5), 155-178. 51. Sellergren, B., Direct drug determination by selective sample enrichment on an imprinted polymer. Analytical chemistry 1994, 66 (9), 1578-1582. 52. Chapuis, F.; Pichon, V.; Lanza, F.; Sellergren, B.; Hennion, MC.; Retention mechanism of analytes in the solid-phase extraction process using molecularly imprinted polymers. Application to the extraction of triazines from complex matrices. Journal of Chromatography B 2004, 804 (1), 93-101. 53. Masqué, N.; Marcé, R. M.; Borrull, F.; Cormack, P. A.; Sherrington, D. C., Synthesis and evaluation of a molecularly imprinted polymer for selective on-line solid-phase extraction of 4-nitrophenol from environmental water. Analytical chemistry 2000, 72 (17), 4122-4126. 54. Matsui, J.; Kato, T.; Takeuchi, T.; Suzuki, M.; Yokoyama, K.; Tamiya, E.; Karube, I., Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique. Analytical Chemistry 1993, 65 (17), 2223-2224. 55. Chu, Y.; Poole, C. F., System maps for retention of neutral organic compounds under isocratic conditions on a reversed-phase monolithic column. Journal of Chromatography A 2003, 1003 (1-2), 113-121. 56. Silvestri, D.; Borrelli, C.; Giusti, P.; Cristallini, C.; Ciardelli, G., Polymeric devices containing imprinted nanospheres: a novel approach to improve recognition in water for clinical uses. Anal Chim Acta 2005, 542 (1), 3-13. 57. Watabe, Y.; Kondo, T.; Morita, M.; Tanaka, N.; Haginaka, J.; Hosoya, K., Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device. Journal of Chromatography A 2004, 1032 (1), 45-49. 58. Schweitz, L.; Andersson, L. I.; Nilsson, S., Capillary electrochromatography with predetermined selectivity obtained through molecular imprinting. Analytical Chemistry 1997, 69 (6), 1179-1183. 59. Rajabi Khorrami, A.; Narouenezhad, E., Synthesis of molecularly imprinted monolithic fibers for solid-phase microextraction of acetaldehyde from head-space of beverages stored in PET bottles. Talanta 2011, 86 (0), 58-63. 60. Matsui, J.; Kato, T.; Takeuchi, T.; Suzuki, M.; Yokoyama, K.; Tamiya, E.; Karube, I., Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique. Analytical chemistry 1993, 65 (17), 2223-2224. 61. He, J.X.; Fang, G. Z.;Yao, Y. C.; Wang, S., Preparation and characterization of molecularly imprinted silica monolith for screening sulfamethazine. Journal of separation science 2010, 33 (20), 3263-3271. 62. Gao, W.; Gray, N.; Heaton, J.; Smith, N. W.; Jia, Y.; Legido-Quigley, C., UV gradient combined with principal component analysis: Highly sensitive and specific high performance liquid chromatography analysis of cosmetic creams. Journal of Chromatography A 2012, 1228 (0), 324-328. 63. Jain, R.; Mudiam, M. K. R.; Chauhan, A.; Ch, R.; Murthy, R. C.; Khan, H. A., Simultaneous derivatisation and preconcentration of parabens in food and other matrices by isobutyl chloroformate and dispersive liquid–liquid microextraction followed by gas chromatographic analysis. Food chemistry 2013, 141 (1), 436-443. 64. Sanchez-Prado, L.; Lamas, J. P.; Lores, M.; Garcia-Jares, C.; Llompart, M., Simultaneous in-cell derivatization pressurized liquid extraction for the determination of multiclass preservatives in leave-on cosmetics. Analytical chemistry 2010, 82 (22), 9384-9392.
摘要: In this research, the in-tip monolithic molecularly imprinted polymer solid phase extraction (MMIP-SPE) with HPLC-UV to analyze four parabens in cosmetic sample and in wastewater was investigated. MMIP was synthesized by using methyl paraben as template, methyl acrylic acid (MAA) as monomer, ethylene glycol dimethylacrylate (EGDMA) as cross-linker, azobisisobutyronitrile (AIBN) as initiator and 15 mL of methanol/acetone/ toluene (8:2:5) as porogenic solvent. After being mixed homogeneously and deoxygenated by purging with nitrogen, the solution (300 μL) was injected into a pipette-tip to achieve polymerization under UV light for 4 hours. The in-tip MMIP solid phase with high permeability and recognition on parabens was thus obtained. Parameters affecting the extraction such as the pH of sample solution, the methanol content in rinsing solution, and the pH of eluting solution and its volume were thoroughly optimized. The maximum extraction efficiency of MMIP-SPE was obtained by loading 5 mL sample solution at pH 4, rinsing with 1 mL of 5% methanol in pH 4 phosphate buffer, and eluting by 350 μL of 60% methanol at pH 11 phosphate buffer. Parabens in the collected eluent were analyzed by HPLC-UV at 254 nm. Under the selected conditions, determination of parabens ranged in 5-2000 ng/mL with linear coefficients higher than 0.9963. Detection limits (LOD) were in 0.09-0.2 ng/mL with RSDs lower than 3.9%. The extraction time was less than 5 minutes. The presented MMIP-SPE was applied to real sample analysis with recoveries ranged in 87.1-104.6% for spiked dilute cosmetic samples and 88.6-109.5% for wastewater. Results exhibited the in-tip MMIP-SPE is a high selectivity, simple, rapid and convenient sample preparation method for the determination of parabens in aqueous samples.
本研究開發以移液管尖頭整體柱分子辨識印模聚合物固相萃取(MMIP-SPE),結合HPLC-UV分析化妝品中四種對羥基苯甲酸酯(Methyl Paraben, Ethyl Paraben, Propyl Paraben與Butyl Paraben)防腐劑。整體柱分子辨識印模聚合物的製備,以30.2 mg Methyl Paraben為模板分子,加入67.5 μL 功能性單體MAA、745 μL交聯劑EGDMA、20 mg起始劑AIBN、與15 mL製孔溶劑Methanol/Acetone/Toluene (8/2/5),均勻溶解後,注入0.3 mL移液管尖頭內並通氮氣除氧氣後,置放於紫外光燈照射下進行光聚合4小時,即可製備對Parabens有辨識能力且通透性佳的整體柱分子辨識印模聚合物固相萃取管。對稀釋的化妝品樣品溶液中Parabens進行萃取,輔以HPLC於UV波長254 nm分析。為獲得最佳萃取效果,研究中除製備MMIPSPE管外,亦對MMIPSPE萃取進行最佳化條件探討,例如萃取時樣品的pH值、清洗雜質溶液條件、及沖提分析物的條件等作詳盡探討。實驗結果顯示,將5 mL之pH 4樣品溶液,經過分子印模固相萃取管後以壓推方式將樣品基質液推出,接著以1 mL含5%甲醇之pH 4磷酸緩衝溶液潤洗後推出,最後以350 μL含60%甲醇之pH 11磷酸緩衝溶液脫附分析物,可得最佳萃取效果,再將脫附溶液注入HPLC-UV進行分析,其偵測濃度之線性範圍為5-2000 ng/mL,線性相關係數達0.9963以上,偵測極限介於0.2-0.09 ng/mL,RSD低於3.9%,且萃取時間少於5分鐘。將本方法應用在真實樣品中回收率為87.1% -108.5% 。研究結果顯示,以本研究所製備的移液管尖頭整體柱分子辨識印模聚合物固相萃取管萃取水溶液中的Parabens,為一具高選擇性、簡單且快速的分析方法。
URI: http://hdl.handle.net/11455/90623
文章公開時間: 2018-08-18
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.