Please use this identifier to cite or link to this item:
標題: Fatty-Acid-Based Supramolecular Microextraction for the Rapid Determination of UV-filters and Polycyclic Aromatic Hydrocarbons in Aqueous Samples by HPLC-UV
作者: 姜盈如
Yin-Ru Jiang
關鍵字: Supramolecular microextraction
Polycyclic aromatic hydrocarbons
引用: 1. Rosen, M. J., Surfactants and interfacial phenomena, 1989. John Wiley and Sons, New York. l-'ashley, RM, McGuiggan, PM, Horn, RG, and Ninham, BW, Journal of Colloid and Interface Science 1988, 126 (2), 569. 2. Prazeres, T. J. V.; Beija, M.; Fernandes, F. V.; Marcelino, P. G. A.; Farinha, J. P.; Martinho, J. M. G., Determination of the critical micelle concentration of surfactants and amphiphilic block copolymers using coumarin 153. Inorganica Chimica Acta 2012, 381 (0), 181-187. 3. Stokes, R. J.; Evans, D. F., Fundamentals of interfacial engineering. John Wiley & Sons: 1997. 4. Paleologos, E. K.; Giokas, D. L.; Karayannis, M. I., Micelle-mediated separation and cloud-point extraction. TrAC Trends in Analytical Chemistry 2005, 24(5), 426-436. 5. Ballesteros-Gómez, A.; Rubio, S.; Pérez-Bendito, D., Potential of supramolecular solvents for the extraction of contaminants in liquid foods. Journal of Chromatography A 2009, 1216 (3), 530-539. 6. Lehn, Jean-Marie, Toward complex matter: Supramolecular chemistry and self-organization. Proceedings of the National Academy of Sciences 2002, 99 (8), 4763-4768. 7. Lehn, Jean-Marie, Supramolecular chemistry: from molecular information towards self-organization and complex matter. Reports on progress in physics 2004, 67 (3), 249-265. 8. Moral, A.; Sicilia, M. D.; Rubio, S., Determination of benzimidazolic fungicides in fruits and vegetables by supramolecular solvent-based microextraction/liquid chromatography/fluorescence detection. Analytica Chimica Acta 2009, 650 (2), 207-213. 9. Peyrovi, M.; Hadjmohammadi, M., Extraction optimization of Loratadine by supramolecular solvent-based microextraction and its determination using HPLC. Journal of Chromatography B 2015, 980 (0), 41-47. 10. Orsi, D. De; Giannini, G.; Gagliardi, L.; Porrà, R.; Berri, S.; Bolasco, A.; Carpani, I.; Tonelli, D., Simple extraction and HPLC determination of UV-A and UV-B filters in sunscreen products. Journal of Chromatography A 2006, 64 (9-10), 509-515. 11. Kimbrough, D. R.,The photochemistry of sunscreens. Journal of Chemical Education 1997, 74 (1), 51. 12. Giokas, D. L., Salvador A., Chisvert, A., UV filters: From sunscreens to human body and the environment. TrAC Trends in Analytical Chemistry 2007, 26 (5), 360-374 13. Schreurs, R.; Lanser, P; Seinen, W.;Burg, van der Burg, B., Estrogenic activity of UV filters determined by an in vitro reporter gene assay and an in vivo transgenic zebrafish assay. Archives of toxicology 2002, 76 (5-6), 257-261. 14. Miller, D.; Wheals, B. B.; Beresford, N.; Sumpter, J. P., Estrogenic activity of phenolic additives determined by an in vitro yeast bioassay. Environmental Health Perspectives 2001, 109 (2), 133-138. 15. Tinwell, H.; Lefevre, P. A.; Moffat,G. J.; Burns, A.; Odum, J.; Spurway,T.; Orphanides, G.; Ashby J., Confirmation of uterotrophic activity of 3-(4-methylbenzylidine)camphor in the immature rat. Environmental Health Perspectives 2002, 110 (5), 533-536. 16. Schlumpf, M.; Cotton, B.; Conscience, M.; Haller, V.; Steinmann, B.; Lichtensteiger, W., In vitro and in vivo estrogenicity of UV screens. Environmental Health Perspectives 2001, 109 (3), 239-244. 17. Jarry, H.; Christoffel, J.; Rimoldi, G.; Koch, L.; Wuttke W., Multi-organic endocrine disrupting activity of the UV screen benzophenone 2 (BP2) in ovariectomized adult rats after 5 days. Toxicology 2004, 205 (1), 87-93. 18. Spielmann, H.; Pfannenbecker, U.; Balls, M.; Dupuis, J.; Pape, W. J. W.; Silva, O. de.; Holzhutter, H. G.; Gerberick, F.; Liebsch, M.; Lovell, W.W., Study of UV filter chemicals from annex VII of European Union Directive 76/768/EEC, in the in vitro 3T3 NRU phototoxicity test. The American Theological Library Association 1998, 26, 697-708. 19. Satcher, D., Report of the surgeon general's conference on chihdren's mental health: A national action agenda. American Journal of Health Education 2001, 32(3), 179-182. 20. Stardards for cosmetics. Ministry of Health and Welfare Notification, 2000, 331, 1-8. 21. Wang, Lai-Hao, Simultaneous determination of seven sunscreen benzophenones in cosmetic products by high-performance liquid chromatography. Journal of Chromatography A 1999, 50 (9-10), 565-570. 22. Giokas, D. L.; Sakkas, V. A.; Albanis, T. A., Determination of residues of UV filters in natural waters by solid-phase extraction coupled to liquid chromatography-photodiode array detection and gas chromatography-mass spectrometry. Journal of Chromatography A 2004, 1026 (1-2), 289-283. 23. Nguyen, K. T. N.; Scapolla, C.; Marina, D. C.; Emanuele, M., Rapid and selective determination of UV filters in seawater by liquid chromatography–tandem mass spectrometry combined with stir bar sorptive extraction. Talanta 2011, 85 (5), 2375-2384. 24. Zhang, Y.; Lee, H. K., Ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction followed high-performance liquid chromatography for the determination of ultraviolet filters in environmental water samples. Analytica Chimica Acta 2012, 750 (0), 120-126. 25. Vela-Soria, F., Ballesteros, O.; Zafra-Gómez, A.; Ballesteros, L.; Navalón, A., A new method for the determination of benzophenone-UV filters in human serum samples by dispersive liquid–liquid microextraction with liquid chromatography–tandem mass spectrometry. Talanta 2014, 121 (0), 97-104. 26. Li, Hsin-Yi; Shih, Hou-Kung; Jen, Jen-Fon, Novel pseudo-solvent based cloud-point microextraction for the determination of parabens in shampoo by HPLC-UV. National Chung Hsing University, Master's thesis, 2014. 27. Shih, Hou-Kuang; Shu, Ting-Yun; Ponnusamy, V. K.; Jen, Jen-Fon, A novel fatty-acid-based in-tube dispersive liquid–liquid microextraction technique for the rapid determination of nonylphenol and 4-tert-octylphenol in aqueous samples using high-performance liquid chromatography–ultraviolet detection. Analytica Chimica Acta 2015, 854(0), 70-77. 28. Yuan, S. Y.; Chang, J. S.; Yen, J. H.; Chang, Bea-Ven, Biodegradation of phenanthrene in river sediment. Chemosphere 2001, 43 (3), 273-278. 29. Wild, S. R.; Jones, K. C., Polynuclear aromatic hydrocarbons in the United Kingdom environment: A preliminary source inventory and budget. Environmental Pollution 1995, 88 (1), 91-108. 30. Mmereki, B. T.; Donaldson, D. J.; Gilman, J. B.; Eliason, T. L.; Vaida, V., Kinetics and products of the reaction of gas-phase ozone with anthracene adsorbed at the air–aqueous interface. Atmospheric Environment 2004, 38 (36), 6091-6103. 31. Dost, K.; İdeli, C., Determination of polycyclic aromatic hydrocarbons in edible oils and barbecued food by HPLC/UV–Vis detection. Food Chemistry 2012, 133 (1), 193-199. 32. Cotham, W. E.; Bidleman, T. F., Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in air at an urban and a rural site near Lake Michigan. Environmental science & technology 1995, 29 (11), 2782-2789. 33. Harrison, R. M.; Smith, D.; Luhana, L., Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environmental science & technology 1996, 30 (3), 825-832. 34. Wenzl, T.; Simon, R.; Anklam, E., Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. TrAC Trends in Analytical Chemistry 2006, 25 (7), 716-725. 35. Keith, L.; Telliard, W., ES&T special report: priority pollutants: Ia perspective view. Environmental science & technology 1979, 13 (4), 416-423. 36. Popp, P.; Bauer, C.; Wennrich, L., Application of stir bar sorptive extraction in combination with column liquid chromatography for the determination of polycyclic aromatic hydrocarbons in water samples. Analytica Chimica Acta 2001, 436 (1), 1-9. 37. Liu, Y.; Li, H.; Lin, Jin-Ming, Magnetic solid-phase extraction based on octadecyl functionalization of monodisperse magnetic ferrite microspheres for the determination of polycyclic aromatic hydrocarbons in aqueous samples coupled with gas chromatography–mass spectrometry. Talanta 2009, 77 (3), 1037-1042. 38. Saleh, A.; Yamini, Y.; Faraji, M.; Rezaee, M.; Ghambarian, M., Ultrasound-assisted emulsification microextraction method based on applying low density organic solvents followed by gas chromatography analysis for the determination of polycyclic aromatic hydrocarbons in water samples. Journal of Chromatography A 2009, 1216 (39), 6673-6679. 39. Baltussen, E.; Sandra, P.; David, F.; Cramers, C., Stir-bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. Journal of Microcolumn Separations 1999, 11 (10), 737-747. 40. Ye, L.; Liu, J.; Yang, X.; Peng, Y.; Xu, L., Orthogonal array design for the optimization of ionic liquid-based dispersive liquid–liquid microextraction of benzophenone-type UV filters. Journal of separation science 2011, 34 (6), 700-706. 41. Oliveira, H. M.; Segundo M. A.; Lima, J. L.F.C.; Miró M.; Cerdà V., On-line renewable solid-phase extraction hyphenated to liquid chromatography for the determination of UV filters using bead injection and multisyringe-lab-on-valve approach. Journal of Chromatography A 2010, 1217 (22), 3575-3582. 42. Giokas, D. L.; Zhu, Q.; Pan, Q.; Chisvert, A., Cloud point–dispersive μ-solid phase extraction of hydrophobic organic compounds onto highly hydrophobic core–shell Fe2O3@C magnetic nanoparticles. Journal of Chromatography A 2012, 1251 (0), 33-39. 43. Zhang, H.; Low, W. P.; Lee, H. K., Evaluation of sulfonated graphene sheets as sorbent for micro-solid-phase extraction combined with gas chromatography–mass spectrometry. Journal of Chromatography A 2012, 1233, 16-21. 44. Oliferova, L.; Statkus, M.; Tsysin, G.; Shpigun, O.; Zolotov, Y., On-line solid-phase extraction and HPLC determination of polycyclic aromatic hydrocarbons in water using fluorocarbon polymer sorbents. Analytica chimica acta 2005, 538 (1), 35-40. 45. Kishikawa, N.; Wada, M.; Kuroda, N.; Akiyama, S.; Nakashima, K., Determination of polycyclic aromatic hydrocarbons in milk samples by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B 2003, 789 (2), 257-264. 46. Hii, T. M.; Basheer, C.; Lee, H. K., Commercial polymeric fiber as sorbent for solid-phase microextraction combined with high-performance liquid chromatography for the determination of polycyclic aromatic hydrocarbons in water. Journal of chromatography 2009, 1216 (44), 7520-7526. 47. Zhang, S.; Niu, H.; Cai, Y.; Shi, Y., Barium alginate caged Fe3O4@ C18 magnetic nanoparticles for the pre-concentration of polycyclic aromatic hydrocarbons and phthalate esters from environmental water samples. Analytica chimica acta 2010, 665 (2), 167-175.
摘要: In this study, a fatty-acid-based supramolecular microextraction (FA-SMME) was applied for the extraction of UV-filters and polycyclic aromatic hydrocarbons (PAHs) from aqueous samples. With the surfactant characteristic, fatty acid salt self-congregates in aqueous sample to form micelles encompassing hydrophobic analytes. When the solution pH is adjusted to lower than its pKa, the neutral hydrophobic fatty acid is formed and extracted analytes from the aqueous phase. A home-made glass extraction barrel inbuilt with a scaled capillary tube was utilized as the FA-SMME device to collect and measure the extractant from 5-mL aqueous sample solution. Parameters affecting the extraction were thoroughly optimized. For extracting UV-filters, 500 μL of 10% sodium heptanoate solution was added into a 8-mL extraction barrel filled with 5 mL sample solution, after shaking for 10 sec, 0.1% of NaCl and 600 μL of H2SO4 were added and shaked for 10 sec to form the insoluble heptanoic acid. The cloudy solution was centrifuged at 1100 rpm for 1 min, then the extractant was push into scaled capillary tube and 20 μL was collected for HPLC analysis. Under these conditions, the detection was linear ranged in 5-1000 ng/mL for 4-MBC, 2.5-500 ng/mL for BP, HMB, OS and HMS with relative standard derivation (RSD) below 7.4%. Detection limits were in 0.5-1 ng/mL, and quantitative limits were in 2-4 ng/mL. Recoveries were from 93.5 % to 106.4 % with RSDs less than 5.7%. For PAHs extraction, 500 μL of 10% sodium heptanoate solution and 500 μL of H2SO4 were used in the FA-SMME with other conditions as for UV-filters. Under the selected conditions, the detections were linear ranged in 10-2000 ng/mL for Nap and AcPy, 4-800 ng/mL for Flu, FluA and Pyr with RSD below 5.0%. Detection limits were in 0.6-1 ng/mL and quantitative limits were in 2-5 ng/mL. Recoveries were from 86.7% to 109.6% with RSDs less than 4.8%. The present FA-SMME method was proven to be a simple, rapid, low-cost and eco-friendly sample preparation process to extract UV-filters and PAHs in aqueous samples.
本研究利用有機酸鹽在水中自組裝特性開發超分子微萃取前處理技術,萃取水中多環芳香烴(naphthalene, acenaphthylene, fluorene, fluoranthene, 與pyrene)及紫外光吸收劑(Benzophenone, 4-Methylbenzylidene camphor, 2-Hydroxy-4-methoxybenzophenone, Octyl salicylate, 與Homosalate),搭配液相層析-紫外線偵測器分析測定。 研究中以脂肪酸鹽(庚酸鈉)在水中自形成屬超分子的微胞特性,將待測物包埋在超分子微胞中。當樣品溶液的pH值調降至其pKa以下時,超分子的微胞崩解,脂肪酸鹽回復為分子態的脂肪酸,待測物則被萃取於與水層分離的脂肪酸相。離心分離後,取上層的脂肪酸相注入HPLC-UV分析測定。 為求得此方法的最佳萃取條件,分別對脂肪酸鈉的用量,硫酸的體積,鹽類添加量及離心轉速進行探討。研究結果顯示,對紫外光吸收劑而言,在5 mL水樣中加入500 μL 10 %庚酸鈉,混合均勻後,加入600 μL的硫酸及0.1 %的NaCl,經轉速1100 rpm離心分離後採樣進HPLC分析,可得最佳的萃取效果。在最佳條件下分析五種紫外光吸收劑,其線性範圍介於 2.5-1000 ng/mL,線性相關係數高於0.9952,偵測極限介於 0.5-1 ng/mL,定量極限介於2-4 ng/mL,RSD 低於 7.4 %。將本方法應用在真實樣品中回收率為93.5-106.4%。 對多環芳香烴而言,在5 mL水樣中加入700 μL 10 %庚酸鈉,混合均勻後,加入500 μL的硫酸及0.1 %的NaCl,經轉速1100 rpm離心分離後採樣進HPLC分析,可得最佳的萃取效果。在最佳條件下分析五種多環芳香烴,其線性範圍介於 4-2000 ng/mL,線性相關係數高於 0.9950,偵測極限介於 0.6-1 ng/mL,定量極限介於2-5 ng/mL,RSD低於5.0 %。將本方法應用在真實樣品中回收率為86.7-109.6%。 本開發方法整個萃取過程少於5分鐘,僅使用極少量的脂肪酸鹽及常見的酸進行萃取,所使用之材料皆不會造成環境負擔,為一操作簡單、方便、快速、高萃取效率,兼具環保的綠色化學分析樣品前處理方法。
文章公開時間: 2018-08-17
Appears in Collections:化學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.