Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90650
標題: Electrochemical sensing applications based on an azo/hydrazo functional group containing polymelamine modified screen printed carbon electrode and electrogenerated chlorine assisted immobilization of 2,8-dihydroxyadenine
含氮/偶氫氮官能基之(聚)三聚氰胺與電聚合氯基固定 2,8-二羥基腺嘌呤之網版修飾電極在電化學感測器之應用
作者: 柯山度
KRISHNAN SENTHILKUMAR
關鍵字: azo, hydrazo, polymelamine, free chlorine, homocysteine, cysteine, ammonia, adenine.
azo, hydrazo, polymelamine, free chlorine, homocysteine, cysteine, ammonia, adenine.
引用: 1. Bard, A. J.; Faulkner, L. R., Electrochemicals methods: Fundamentals and applications. Wiley: 2000. 2. Lane, R. F.; Hubbard, A. T., Electrochemistry of chemisorbed molecules .1. reactants connected to electrodes through olefinic substituents. Journal of Physical Chemistry 1973, 77 (11), 1401-1410. 3. Moses, P. R.; Wier, L.; Murray, R. W., Chemically modified tin oxide electrode. Analytical Chemistry 1975, 47 (12), 1882-1886. 4. Murray, R. W., Chemically modified electrodes. Accounts of Chemical Research 1980, 13 (5), 135-141. 5. Baldwin, R. P.; Thomsen, K. N., Chemically modified electrodes in liquid-chromatography detection - a review. Talanta 1991, 38 (1), 1-16. 6. Wring, S. A.; Hart, J. P., Chemically modified, carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds - a review. Analyst 1992, 117 (8), 1215-1229. 7. Cespedes, F.; MartinezFabregas, E.; Alegret, S., New materials for electrochemical sensing .1. Rigid conducting composites. Trac-Trends in Analytical Chemistry 1996, 15 (7), 296-304. 8. Alegret, S.; Florido, A.; Lima, J.; Machado, A., Flow-through tubular iodide and bromide selective electrodes based on epoxy-resin heterogeneous membranes. Talanta 1989, 36 (8), 825-829. 9. Honda, K.; Hayashi, H., Prussian blue containing nafion composite film as rechargeable battery. Journal of the Electrochemical Society 1987, 134 (6), 1330-1334. 10. Gorton, L.; Johansson, G., Cyclic voltammetry of fad adsorbed on graphite, glassy-carbon, platinum and gold electrodes. Journal of Electroanalytical Chemistry 1980, 113 (1), 151-158. 11. Lee, S. J.; Mukerjee, S.; McBreen, J.; Rho, Y. W.; Kho, Y. T.; Lee, T. H., Effects of Nafion impregnation on performances of PEMFC electrodes. Electrochimica Acta 1998, 43 (24), 3693-3701. 12. Mortimer, R. J., Electrochromic materials. Chemical Society Reviews 1997, 26 (3), 147-156. 13. Detacconi, N. R.; Myung, N.; Rajeshwar, K., Overlayer formation in the n-cdse/ fe(cn)(6) (4-/3-) photoelectrochemical system as probed by laser raman-spectroscopy and electrochemical quartz-crystal microgravimetry. Journal of Physical Chemistry 1995, 99 (16), 6103-6109. 14. Kuwabata, S.; Nakamura, J.; Yoneyama, H., Electrical-conductivity of polypyrrole films doped with carboxylate anions. Journal of the Electrochemical Society 1990, 137 (6), 1788-1792. 15. Detacconi, N. R.; Carmona, J.; Rajeshwar, K., Chemically modified Ni/TiO2 nanocomposite films: Charge transfer from photoexcited TiO2 particles to hexacyanoferrate redox centers within the film and unusual photoelectrochemical behavior. Journal of Physical Chemistry B 1997, 101 (49), 10151-10154. 16. Moad, G.; Solomon, D. H., The chemistry of radical polymerization. Elsevier: 2006. 17. Li, J.; Tu, W.; Li, H.; Han, M.; Lan, Y.; Dai, Z.; Bao, J., In Situ-Generated Nano-Gold Plasmon-Enhanced Photoelectrochemical Aptasensing Based on Carboxylated Perylene-Functionalized Graphene. Analytical Chemistry 2014, 86 (2), 1306-1312. 18. Kumar, A. S.; Sornambikai, S.; Venkatesan, S.; Chang, J. L.; Zen, J. M., Tetracycline Immobilization as Hydroquinone Derivative at Dissolved Oxygen Reduction Potential on Multiwalled Carbon Nanotube. Journal of the Electrochemical Society 2012, 159 (11), G137-G145. 19. Baskar, S.; Liao, C. W.; Chang, J. L.; Zen, J. M., Electrochemical synthesis of electroactive poly(melamine) with mechanistic explanation and its applicability to functionalize carbon surface to prepare nanotube-nanoparticles hybrid. Electrochimica Acta 2013, 88, 1-5. 20. Patai, S., The chemistry of the hydrazo, azo and azoxy groups. Wiley: 1975. 21. Chiu, M. H.; Wei, W. C.; Zen, J. M., The role of oxygen functionalities at carbon electrode to the electrogenerated chemiluminescence of Ru(bpy)(3)(2+). Electrochemistry Communications 2011, 13 (6), 605-607. 22. Maeda, H.; Itami, M.; Yamauchi, Y.; Ohmori, H., Surface characterization of glassy carbon electrodes anodized in 1-alkanols by their wettability and capacitance. Chemical & Pharmaceutical Bulletin 1996, 44 (12), 2294-2299. 23. Dai, L. M., Functionalization of Graphene for Efficient Energy Conversion and Storage. Accounts of Chemical Research 2013, 46 (1), 31-42. 24. Liu, J. Y.; Cheng, L.; Li, B. F.; Dong, S. J., Covalent modification of a glassy carbon surface by 4-aminobenzoic acid and its application in fabrication of a polyoxometalates-consisting monolayer and multilayer films. Langmuir 2000, 16 (19), 7471-7476. 25. Debela, A. M.; Ortiz, M.; Beni, V.; O'Sullivan, C. K., Facile Electrochemical Hydrogenation and Chlorination of Glassy Carbon to Produce Highly Reactive and Uniform Surfaces for Stable Anchoring of Thiolated Molecules. Chemistry-a European Journal 2014, 20 (25), 7646-7654. 26. Deinhammer, R. S.; Ho, M.; Anderegg, J. W.; Porter, M. D., Electrochemical oxidation of amine-containing compounds - a route to the surface modification of glassy-carbon electrodes. Langmuir 1994, 10 (4), 1306-1313. 27. Grondein, A.; Belanger, D., Covalent grafting of aminated compounds on Vulcan XC72R by melamine in situ diazotization. Carbon 2012, 50 (12), 4335-4342. 28. Gray, K. M.; Liba, B. D.; Wang, Y.; Cheng, Y.; Rubloff, G. W.; Bentley, W. E.; Montembault, A.; Royaud, I.; David, L.; Payne, G. F., Electrodeposition of a Biopolymeric Hydrogel: Potential for One-Step Protein Electroaddressing. Biomacromolecules 2012, 13 (4), 1181-1189. 29. Zen, J. M.; Kumar, A. S., Screen printed electrochemical sensor, Encyleopedia sensors. American scientific publisher: California, 2005. 30. White, G. C., Handbook of Chlorination. 2 ed.; Van Nostrand Reinhold Company Inc: New York, 1986. 31. Harison, J. W.; Hand, R. E., The effect of dilution and organic matter on the antibacterial property of 5.25% sodium hypochlorite. Journal of Endodontics 1981, 7 (3), 128-132. 32. Wilcox, M. H.; Fawley, W. N.; Wigglesworth, N.; Parnell, P.; Verity, P.; Freeman, J., Comparison of the effect of detergent versus hypochlorite cleaning on environmental contamination and incidence of Clostridium difficile infection. Journal of Hospital Infection 2003, 54, 109-114. 33. Awad, M. I.; Sata, S.; Ohsaka, T., Simultaneous electroanalysis of hypochlorite and H2O2: Use of I-/I-2 as a probing potential buffer. Electroanalysis 2005, 17 (9), 769-775. 34. Organization, W. H., Guidelines for safe recreational water environments. World Health Organization: 2006; Vol. 2. 35. Clesceri, L. S.; Greenberg, a. e.; Eaton, A. D., Standard Methods for the Examination of Water and Wastewater. 1999; Vol. 20. 36. Santos, D. D., Standard Methods for the Analysis of Water and Wastewater. APHA, AWWA, WPCF, Madrid,: Spain, 1992. 37. Leggett, D. J.; Chen, N. H.; Mahadevappa, D. S., Rapid-determination of residual chlorine by flow-injection analysis. Analyst 1982, 107 (1273), 433-441. 38. Pobozy, E.; Pyrzynska, K.; Szostek, B.; Trojanowicz, M., Flow-injection spectrophotometric determination of free residual chlorine in waters with 3,3'-dimethylnaphtidine. Microchemical Journal 1995, 51 (3), 379-386. 39. Ordeig, O.; Mas, R.; Gonzalo, J.; Del Campo, F. J.; Munoz, F. J.; de Haro, C., Continuous detection of hypochlorous acid/hypochlorite for water quality monitoring and control. Electroanalysis 2005, 17 (18), 1641-1648. 40. Olive-Monllau, R.; Orozco, J.; Fernandez-Sanchez, C.; Baeza, M.; Bartroli, J.; Jimenez-Jorquera, C.; Cespedes, F., Flow injection analysis system based on amperometric thin-film transducers for free chlorine detection in swimming pool waters. Talanta 2009, 77 (5), 1739-1744. 41. Tsai, T.-H.; Lin, K.-C.; Chen, S.-M., Electrochemical Synthesis of Poly(3,4-ethylenedioxythiophene) and Gold Nanocomposite and Its Application for Hypochlorite Sensor. International Journal of Electrochemical Science 2011, 6 (7), 2672-2687. 42. Thiagarajan, S.; Wu, Z.-Y.; Chen, S.-M., Amperometric determination of sodium hypochlorite at poly MnTAPP-nano Au film modified electrode. Journal of Electroanalytical Chemistry 2011, 661 (2), 322-328. 43. Pathiratne, K. A. S.; Skandaraja, S. S.; Jayasena, E. M. C. M., Linear sweep voltammetric determination of free chlorine in waters using graphite working electrodes. Journal of the National Science Foundation of Sri Lanka 2008, 36 (1), 25-31. 44. Murata, M.; Ivandini, T. A.; Shibata, M.; Nomura, S.; Fujishima, A.; Einaga, Y., Electrochemical detection of free chlorine at highly boron-doped diamond electrodes. Journal of Electroanalytical Chemistry 2008, 612 (1), 29-36. 45. Thiyagarajan, N.; Chang, J. L.; Senthilkumar, K.; Zen, J. M., Disposable electrochemical sensors: A mini review. Electrochemistry Communications 2014, 38, 86-90. 46. Chen, X.; Wang, X.; Wang, S.; Shi, W.; Wang, K.; Ma, H., A highly selective and sensitive fluorescence probe for the hypochlorite anion. Chemistry-a European Journal 2008, 14 (15), 4719-4724. 47. Wei, F.; Lu, Y.; He, S.; Zhao, L.; Zeng, X., Highly sensitive fluorescent chemosensor for hypochlorite anion based on a novel irreversible ring-opening strategy. Analytical Methods 2012, 4 (3), 616-618. 48. Prasad, K. S.; Muthuraman, G.; Zen, J.-M., The role of oxygen functionalities and edge plane sites on screen-printed carbon electrodes for simultaneous determination of dopamine, uric acid and ascorbic acid. Electrochemistry Communications 2008, 10 (4), 559-563. 49. Qiang, Z. M.; Adams, C. D., Determination of monochloramine formation rate constants with stopped-flow spectrophotometry. Environmental Science & Technology 2004, 38 (5), 1435-1444. 50. Hsu, C. T.; Chung, H. H.; Lyuu, H. J.; Tsai, D. M.; Kumar, A. S.; Zen, J. M., An electrochemical cell coupled with disposable screen-printed electrodes for use in flow injection analysis. Analytical Sciences 2006, 22 (1), 35-38. 51. Compton, R. G.; Banks, C. E., Understanding Voltammetry. Imperial college press: London, 2010. 52. Galus, Z., Fundamentals of Electrochemical Analysis. Ellis Horwood Press: 1976. 53. Gardiner, J.; Mance, G., UK Water Quality Standards Arising from EEC Directives, WRC Technical Report TR204, Medmenham. 1984. 54. Wyers, G. P.; Otjes, R. P.; Slanina, J., A continuous-flow denuder for the measurment of ambient concentration and surface-exchange fluxes of ammonia. Atmospheric Environment. Part A. General Topics 1993, 27 (13), 2085-2090. 55. Dubas, S. T.; Pimpan, V., Green synthesis of silver nanoparticles for ammonia sensing. Talanta 2008, 76 (1), 29-33. 56. Strehlitz, B.; Grundig, B.; Kopinke, H., Sensor for amperometric determination of ammonia and ammonia-forming enzyme reactions. Analytica Chimica Acta 2000, 403 (1-2), 11-23. 57. Timmer, B.; Olthuis, W.; van den Berg, A., Ammonia sensors and their applications - a review. Sensors and Actuators B-Chemical 2005, 107 (2), 666-677. 58. Crosby, N. T., Determination of ammonia by the Nessler method in waters containing hydrazine. Analyst 1968, 93, 406-408. 59. Bolleter, W. T.; Bushman, C. J.; Tidwell, P. W., Spectrophotometric determination of ammonia as indophenol. Analytical Chemistry 1961, 33, 592-594. 60. Fawcett, J. K.; Scott, J. E., A rapid and precise method for the determination of urea. J. Clin. Path. 1960, 13, 156-159. 61. Kempers, A. J.; Kok, C. J., Re-examination of the determination of ammonium as the indophenol blue complex using salicylate. Analytica Chimica Acta 1989, 221 (1), 147-155. 62. Aminot, A.; Kirkwood, D. S.; Kerouel, R., Determination of ammonia in seawater by the indophenol-blue method: Evaluation of the ICES NUTS I/C 5 questionnaire. Marine Chemistry 1997, 56 (1-2), 59-75. 63. Tzollas, N. M.; Zachariadis, G. A.; Anthemidis, A. N.; Stratis, J. A., A new approach to indophenol blue method for determination of ammonium in geothermal waters with high mineral content. International Journal of Environmental Analytical Chemistry 2010, 90 (2), 115-126. 64. Hamalainen, J. P.; Tummavuori, J. L.; Aho, M. J., Determination of NH3 in pyrolysis gases by ammonia selective electrode. Talanta 1993, 40 (10), 1575-1581. 65. Valentini, F.; Biagiotti, V.; Lete, C.; Palleschi, G.; Wang, J., The electrochemical detection of ammonia in drinking water based on multi-walled carbon nanotube/copper nanoparticle composite paste electrodes. Sensors and Actuators B-Chemical 2007, 128 (1), 326-333. 66. Coulson, D. M., Electrolytic conductivity detector for gas chromatography. J. Chromatogr. Sci. 1966, 4, 285-287. 67. Kashihira, N.; Makino, K.; Kirita, K.; Watanabe, Y., Chemi-luminescent nitrogen detector gas-chromatography and its application to measurement of atmospheric ammonia and amines. Journal of Chromatography 1982, 239 (APR), 617-624. 68. Pranaityte, B.; Jermak, S.; Naujalis, E.; Padarauskas, A., Capillary electrophoretic determination of ammonia using headspace single-drop microextraction. Microchemical Journal 2007, 86 (1), 48-52. 69. Beck, W.; Engelhardt, H., Capillary electrophoresis of organic and inorganic cations with indirect uv detection. Chromatographia 1992, 33 (7-8), 313-316. 70. Padarauskas, A.; Paliulionyte, V.; Pranaityte, B., Single-run capillary electrophoretic determination of inorganic nitrogen species in rainwater. Analytical Chemistry 2001, 73 (2), 267-271. 71. Wang, L. J.; Cardwell, T. J.; Cattrall, R. W.; de Castro, M. D. L.; Kolev, S. D., Determination of ammonia in beers by pervaporation flow injection analysis and spectrophotometric detection. Talanta 2003, 60 (6), 1269-1275. 72. Pasquini, C.; Deoliveira, W. A., Monosegmented system for continuous-flow analysis - spectrophotometric determination of chromium(vi), ammonia, and phosphorus. Analytical Chemistry 1985, 57 (13), 2575-2579. 73. Meyerhoff, M. E.; Fraticelli, Y. M., Flow-injection determination of ammonia-n using polymer membrane electrode-based gas sensing system. Analytical Letters Part B-Clinical and Biochemical Analysis 1981, 14 (6), 415-432. 74. Bulatov, A. V.; Ivasenko, P. A.; Moskvin, L. N., Stepwise injection potentiometric determination of ammonium ions in water. J. Flow Inj. Anal 2009, 26, 49-52. 75. Kerouel, R.; Aminot, A., Fluorometric determination of ammonia in sea and estuarine waters by direct segmented flow analysis. Marine Chemistry 1997, 57 (3-4), 265-275. 76. Aminot, A.; Kerouel, R.; Birot, D., A flow injection-fluorometric method for the determination of ammonium in fresh and saline waters with a view to in situ analyses. Water Research 2001, 35 (7), 1777-1785. 77. Zhang, J. L.; Liu, H. D.; Huang, L. H.; Tan, S. Z.; J., M. W.; X, C., Pre-stabilized reduced graphene oxide by ammonia as carrier for Ni(OH)2 with excellent electrochemical property. J Solid State Electrochem 2014. 78. Ji, X. B.; Banks, C. E.; Compton, R. G., The electrochemical oxidation of ammonia at boron-doped diamond electrodes exhibits analytically useful signals in aqueous solutions. Analyst 2005, 130 (10), 1345-1347. 79. Imbeault, R.; Finkelstein, D.; Reyter, D.; Garbarino, S.; Rouse, L.; Guay, D., Kinetically stable PtxIr100-x alloy thin films prepared by pulsed laser deposition oxidation of NH3 and poisoning resistance. Electrochimica Acta 2014, 142 (1), 289-298. 80. Senthilkumar, K.; Zen, J. M., Free chlorine detection based on EC' mechanism at an electroactive polymelamine–modified electrode. Electrochemistry Communications 2014, 46, 87-90. 81. Andrew, K. N.; Worsfold, P. J.; Comber, M., On-line flow injection monitoring of ammonia in industrial liquid effluents. Analytica Chimica Acta 1995, 314 (1), 33-43. 82. Strehlitz, B.; Grundig, B.; Kopinke, H., Sensor for amperometric determination of ammonia and ammonia-forming enzyme reactions. Analytica chimica acta 2000, 403 (1), 11-23. 83. Massafera, M. P.; Cordoba de Torresi, S. I., Evaluating the performance of polypyrrole nanowires on the electrochemical sensing of ammonia in solution. Journal of Electroanalytical Chemistry 2012, 669, 90-94. 84. Inaba, A.; Yoo, K.; Takei, Y.; Matsumoto, K.; Shimoyama, I., Ammonia gas sensing using a graphene field–effect transistor gated by ionic liquid. Sensors and Actuators B: Chemical 2014, 195, 15-21. 85. Tao, L.-M.; Niu, F.; Zhang, D.; Wang, T.-M.; Wang, Q.-H., Amorphous covalent triazine frameworks for high performance room temperature ammonia gas sensing. New Journal of Chemistry 2014. 86. Pang, Z.; Fu, J.; Luo, L.; Huang, F.; Wei, Q., Fabrication of PA6/TiO< sub> 2</sub>/PANI composite nanofibers by electrospinning–electrospraying for ammonia sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 461, 113-118. 87. Crowley, K.; O'Malley, E.; Morrin, A.; Smyth, M. R.; Killard, A. J., An aqueous ammonia sensor based on an inkjet-printed polyaniline nanoparticle-modified electrode. Analyst 2008, 133 (3), 391-399. 88. Zilberman, Y.; Chen, Y.; Sonkusale, S. R., Dissolved ammonia sensing in complex mixtures using metalloporphyrin-based optoelectronic sensor and spectroscopic detection. Sensors and Actuators B: Chemical 2014, 202, 976-983. 89. Shahrokhian, S., Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Analytical Chemistry 2001, 73 (24), 5972-5978. 90. Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg, I. H.; D'Agostino, R. B.; Wilson, P. W. F.; Wolf, P. A., Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. New England Journal of Medicine 2002, 346 (7), 476-483. 91. Refsum, H.; Ueland, P. M.; Nygard, O.; Vollset, S. E., Homocysteine and cardiovascular disease. Annual Review of Medicine 1998, 49, 31-62. 92. Nekrassova, O.; Lawrence, N. S.; Compton, R. G., Analytical determination of homocysteine: a review. Talanta 2003, 60 (6), 1085-1095. 93. Amarnath, K.; Amarnath, V.; Amarnath, K.; Valentine, H. L.; Valentine, W. M., A specific HPLC-UV method for the determination of cysteine and related aminothiols in biological samples. Talanta 2003, 60 (6), 1229-1238. 94. Bald, E.; Kaniowska, E.; Chwatko, G.; Glowacki, R., Liquid chromatographic assessment of total and protein-bound homocysteine in human plasma. Talanta 2000, 50 (6), 1233-1243. 95. Garcia, C. D.; Henry, C. S., Coupling capillary electrophoresis and pulsed electrochemical detection. Electroanalysis 2005, 17 (13), 1125-1131. 96. Chen, X.; Zhou, Y.; Peng, X.; Yoon, J., Fluorescent and colorimetric probes for detection of thiols. Chemical Society Reviews 2010, 39 (6), 2120-2135. 97. Rafii, M.; Elango, R.; Courtney-Martin, G.; House, J. D.; Fisher, L.; Pencharz, P. B., High-throughput and simultaneous measurement of homocysteine and cysteine in human plasma and urine by liquid chromatography–electrospray tandem mass spectrometry. Analytical biochemistry 2007, 371 (1), 71-81. 98. Wang, H.; Liang, S.-C.; Zhang, Z.-M.; Zhang, H.-S., 3-Iodoacetylaminobenzanthrone as a fluorescent derivatizing reagent for thiols in high-performance liquid chromatography. Analytica chimica acta 2004, 512 (2), 281-286. 99. Chou, S.-T.; Ko, L.-E.; Yang, C.-S., High performance liquid chromatography with fluorimetric detection for the determination of total homocysteine in human plasma: method and clinical applications. Analytica chimica acta 2001, 429 (2), 331-336. 100. Baron, M.; Sochor, J., Estimation of Thiol Compounds Cysteine and Homocysteine in Sources of Protein by Means of Electrochemical Techniques. Int. J. Electrochem. Sci 2013, 8, 11072-11086. 101. Baron, M.; Sochor, J., Estimation of Thiol Compounds Cysteine and Homocysteine in Sources of Protein by Means of Electrochemical Techniques. International Journal of Electrochemical Science 2013, 8 (9), 11072-11086. 102. Garcia, C. D.; Henry, C. S., Coupling capillary electrophoresis and pulsed electrochemical detection. Electroanalysis 2005, 17 (13), 1125-1131. 103. Cavanillas, S.; Serrano, N.; Diaz‐Cruz, J. M.; Arino, C.; Esteban, M., Commercial Screen‐Printed Gold Electrodes for the Detection and Quantification of Aminothiols in Human Plasma by Liquid Chromatography with Electrochemical Detection. Electroanalysis 2014, 26 (3), 581-587. 104. Ge, S.; Yan, M.; Lu, J.; Zhang, M.; Yu, F.; Yu, J.; Song, X.; Yu, S., Electrochemical biosensor based on graphene oxide–Au nanoclusters composites for l-cysteine analysis. Biosensors and Bioelectronics 2012, 31 (1), 49-54. 105. Kannan, P.; Maiyalagan, T.; Sahoo, N. G.; Opallo, M., Nitrogen doped graphene nanosheet supported platinum nanoparticles as high performance electrochemical homocysteine biosensors. Journal of Materials Chemistry B 2013, 1 (36), 4655-4666. 106. Kalimuthu, P.; John, S. A., Nanostructured electropolymerized film of 5-amino-2-mercapto-1,3,4-thiadiazole on glassy carbon electrode for the selective determination of L-cysteine. Electrochemistry Communications 2009, 11 (2), 367-370. 107. Su, W. Y.; Cheng, S. H., Electrocatalysis and sensitive determination of cysteine at poly(3,4-ethylenedioxythiophene)-modified screen-printed electrodes. Electrochemistry Communications 2008, 10 (6), 899-902. 108. Majidi, M. R.; Asadpour-Zeynali, K.; Hafezi, B., Sensing L-cysteine in urine using a pencil graphite electrode modified with a copper hexacyanoferrate nanostructure. Microchimica Acta 2010, 169 (3-4), 283-288. 109. Razmi, H.; Habibi, E., Preparation and Characterization of a Tin Pentacyanonitrosylferrate-Modified Carbon Ceramic Electrode: Application to Electrocatalytic Oxidation and Amperometric Detection of L-Cysteine. Electroanalysis 2009, 21 (7), 867-874. 110. Li, G. Y.; Chen, Y.; Wu, J. H.; Ji, L. N.; Chao, H., Thiol-specific phosphorescent imaging in living cells with an azobis(2,2 '-bipyridine)-bridged dinuclear iridium(III) complex. Chemical Communications 2013, 49 (20), 2040-2042. 111. Li, G. Y.; Liu, J. P.; Huang, H. Y.; Wen, Y.; Chao, H.; Ji, L. N., Colorimetric and luminescent dual-signaling responsive probing of thiols by a ruthenium(II)-azo complex. Journal of Inorganic Biochemistry 2013, 121, 108-113. 112. Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry 1979, 101 (1), 19-28. 113. Shiu, H. Y.; Wong, M. K.; Che, C. M., 'Turn-on' FRET-based luminescent iridium(III) probes for the detection of cysteine and homocysteine. Chemical Communications 2011, 47 (15), 4367-4369. 114. Zen, J. M.; Kumar, A. S.; Tsai, D. M., Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 2003, 15 (13), 1073-1087. 115. Belanger, D.; Pinson, J., Electrografting: a powerful method for surface modification. Chemical Society Reviews 2011, 40 (7), 3995-4048. 116. Breton, T.; Belanger, D., Modification of carbon electrode with aryl groups having an aliphatic amine by electrochemical reduction of in situ generated diazonium cations. Langmuir 2008, 24 (16), 8711-8718. 117. Alvarez, N. D. S.; Ortea, P. M.; Paneda, A. M.; Castanon, M. J. L.; Ordieres, A. J. M.; Blanco, P. T., A comparative study of different adenine derivatives for the electrocatalytic oxidation of beta-nicotinamide adenine dinucleotide. Journal of Electroanalytical Chemistry 2001, 502 (1-2), 109-117. 118. Oliveira-Brett, A. M.; Diculescu, V.; Piedade, J. A. P., Electrochemical oxidation mechanism of guanine and adenine using a glassy carbon microelectrode. Bioelectrochemistry 2002, 55 (1-2), 61-62. 119. Hawkins, C. L.; Davies, M. J., Hypochlorite-induced damage to nucleosides: Formation of chloramines and nitrogen-centered radicals. Chemical Research in Toxicology 2001, 14 (8), 1071-1081. 120. Piela, B.; Wrona, P. K., Electrochemical behavior of chloramines on the rotating platinum and gold electrodes. Journal of the Electrochemical Society 2003, 150 (5), E255-E265. 121. Name reactions in heterocyclic chemistry. A John wiley and sons, Inc., Publicaiton: 2005.
摘要: Azo and hydroazo fuctional group containing polymelamine modified screen printed carbon electrode (polymelamine-SPCE) has been applied for electrocatalytic application. The polymelamine film thickness has been measured using atomic force microscopy as 2.4 μm. This functional group involving in quasi-reversible reaction in 0.1 M, pH 7 PBS and heterogenous electron transfer rate of the polymelamine was calculated using Laviron equation as 2.05 s-1. First study focused on the determination of free chlorine using the polymelamine-SPCE. It is based on EC' mechanism, electrocatalytic detection of free chlorine with the azo functionality of polymelamine first reduced electrochemically followed by oxidization with free chlorine in a cyclic manner. Then, we devoted for the ammonia determination with an indirect method by utilizing the above free chlorine polymelamine system. In the presence of free chlorine, ammonia is known to get oxidized to nitrogen and nitrogen chloride. The decrease in free chlorine concentration signal indirectly represents the ammonia concentration. The determination of cysteine and homocysteine in the presence of other amino acids using polymelamine-SPCE was further carried out. This can be revealed as oxidized hydrazo functionality (azo) chemically reduced with thiol containing amino acid then electrochemical system continuously regenerates the azo. The regeneration energy was used as a transduction signal of the homocysteine/cysteine. Finally, the electrogenerated chlorine was utilized for adenine oxidized product immobilization. This immobilized product was found to catalyze NADH at 52 mV Vs Ag/AgCl which is 240 mV less than that of unmodified electrode.
URI: http://hdl.handle.net/11455/90650
文章公開時間: 2016-11-11
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.