Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90661
標題: Development of nanosized alloy modified screen–printed edge band ultramicroelectrode for electrochemical sensor
奈米合金修飾網版印刷超微電極於電化學感測器之研究
作者: 陳瑞明
Jui-Ming Chen
關鍵字: alloy
ultramicroelectrode
copper
gold
palladium
合金
超微電極
孔洞


引用: 1.Koichi Aoki, Electroanalysis, 5, 1993, 627–639. 2.A.J Bard, L.R. Faulkner, John Wiley & Sons, Inc. (2 Edt.), Electrochemical Methods, Fundamentals and Application, p.161. 3.A.J. Bard, L.R. Faulkner, John Wiley & Sons, Inc. (2 Edt.), Electrochemical Methods, Fundamental and Applications, p.32. 4.J.L. Chang, J.M. Zen, Electrochem. Commun. 8, 2006, 571. 5.高逢時, 科學發展, 2005, 386. 6. 金屬奈米粒子的製造, 郭清癸, 黃俊傑, 牟中原, 物理雙月刊, 23, 2001, 6. 7.Asta ŠILEIKAITĖ, Igoris PROSYČEVAS, Judita PUIŠO, Algimantas JURAITIS, Asta GUOBIENĖ, MATERIALS SCIENCE (MEDŽIAGOTYRA), 12, 2006, 4. 8.李佩芸, 高靈敏可攜式甲醛氣體感測器之研發與應用, 2014. 9.C.C. Yang, A.S. Kumar, M.C. Kuo, S.H. Chien, J.Y. Zen, Anal. Chim. Acta, 554, 2005, 66–73. 10.C.Y. Tai, J.L. Chang, J.F. Lee, T.S. Chan, J.M. Zen, Electrochim. Acta, 56, 2011, 3115–3121. 11.Xiangwen Liu, Dingsheng Wang, Yadong Li, Nanotoday, 7, 2012, 448–466. 12.陳建穎, 陳軍華, 中空Ag–Au、Ag–Pt合金奈米粒子之合成, 2009 13.Ouassim Ghodbane, Lionel Roué, Daniel Bélanger, Chem. Mater, 20, 2008, 3495–3504 14.Lin Yang, Chuangang Hu, Jinlong Wang, Zongxian Yang, Yuming Guo, Zhengyu Bai, Kui Wanga, Chem. Commun, 47,2011, 8581–8593 15.Georgios Kyriakou, Matthew B. Boucher, April D. Jewell, Emily A. Lewis, Timothy J. Lawton, Ashleigh E. Baber, Heather L. Tierney, Maria Flytzani–Stephanopoulos, E. Charles H. Sykes, Nature, 335, 2012, 1209–1212. 16.Caixia Xu, Yunqing Liu, Jinping Wang, Haoran Geng, Huajun Qiu, Appl. Mater. Interfaces, 3 , 2011, 4626–4632.. 17.Mallikarjuna N. Nadagouda, Rajender S. Varma, Crystal Growth & Design, 7, 2007, 12. 18.Ilija Najdovski, PR Selvakannan, Anthony P. O' Mullane, Suresh K. Bhargava, Chem. Eur., 17, 2001, 10058–10063. 19.Minhua Shao, Krista Shoemaker, Amra Peles, Keiichi Kaneko, Lesia Protsailo, J. AM. CHEM. SOC, 132, 2010, 9253–9255. 20.Lu Xiong, Yu–Xi Huang, Xian–Wei Liu, Guo–Ping Sheng, Wen–Wei Li, Han–Qing Yu, Electrochimica Acta, 89, 2013, 24–28. 21.Jun Yin, Shiyao Shan, Mei Shan Ng, Lefu Yang, Derrick Mott, Weiqin Fang, Ning Kang, Jin Luo, Chuan–Jian Zhong, Langmuir, 29, 2013, 9249–9258 22.Anna Zalineeva, Stève Baranton, Christophe Coutanceau, Gregory Jerkiewicz, Langmuir , 31, 2015, 1605-1609. 23.G.Liu, T.P. St. Clair, D.W. Goodman, J. Phys. Chem, 103, 1999, 8578–8585. 24.J.S. Tang, J.M. Zen, Anal. Chen., 67, 1995, 208–211. 25.周映傑, 拋棄式奈米孔洞金銅合金電極之製備與應用, 2013. 26.超微電極化學感測器的研發與製作, 周志宏, 2011. 27.可拋棄式高催化性金屬電極之研發與應用, 戴君彥, 2011. 28.M.Haruta, T.Kobayashi, H.Sano, N.Yamada, Chem Lett., 16, 1987, 405–408. 29.A.Yu, Z.Liang, J.Cho, F.Caruso, Nano Lett., 3, 2003, 1203–1207. 30.J. J. Mallett, W. Shao, D. Liang, and G. Zangari, Electrochem. Solid–State Lett., 12, 2009, D57–D60.
摘要: Herein, we develop a facile method to prepare Cu/Pd alloy with porous structure on a screen–printed edge band ultramicroelectrode(SPUME). Simply by immersing a Cu–modified SPUME in palladium solution, there is a spontaneous irreversible redox reaction in which Pd2+ ion from solution oxidizes Cu on SPUME. The driving force for this exchange reaction is the difference about equilibrium potential and surface energy. Scanning electron microscopy(SEM) images indicate the formation of unique and small porous structure of Cu/Pd alloy mainly due to edge diffusion effect at the SPUME. Further electron spectroscopy of chemical analysis(ESCA) was employed to examine the formation Cu/Pd alloy. A shift of Cu2p binding energy, 930.7 eV, at the Pd/Cu/SPUME compare to that, 932.8 eV, at Cu/SPUME confirms the formation of alloy. Under optimized condition, this developed Cu/Pd/SPUME showed a wild linear range from 10–1000 μm, a limit detection of 2.40 μm(S/N=3) and good sensitivity which compared to SPCE. About Future work, we try to develop a safe and fast method to fabricate Au/Cu alloy on SPUME. SPUME was electrodeposited in the solution mixed with Au and Cu. The electrochemical behavior of Au–Cu/SPUME is similar to AuCu3 electrode.
本論文以網版印刷超微電極(Screen–printed Edge Band Ultramicroelectrode, SPUME;電極幾何面積為3.6╳10–4 cm2)為工作平台,利用電化學還原法搭配具選擇性之金屬離子交換反應成功將奈米銅鈀合金粒子修飾於電極表面,並使用此一具特殊活性之奈米銅鈀超微電極應用於聯胺的偵測。選擇性離子交換反應乃利用銅與鈀表面能量及電位上的差異,使兩者發生選擇性化學還原,藉此使表面生成最高含量之銅鈀合金。其物理性質經由場發射掃描式電子顯微鏡(Field–Emission Scanning Electron Microscope)觀察,相較於網版印刷碳電極(Screen–printed Carbon Electrode, SPCE;電極幾何面積為0.196 cm2)而言,只有在利用超微電極才具有特殊的孔洞結構,而孔洞性質帶來的比表面積增加將增加其在分析上的催化性,且利用化學分析電子能譜儀(Electron Spectroscope for Chemical Analysis)分析可證實得到銅元素之結合能為930.7 ev,與標準銅之結合能932.8 eV相異2.1 eV,即表示其特殊表面結構確屬合金粒子。最後以安培法偵測聯胺,線性範圍可達10–1000 μM,r = 0.9985,偵測極限為2.40 μM (S/N=3),其分析靈敏度為3.418 A/μM cm2,相較於同樣製程方法於網版印刷碳電極上以安培法偵測聯胺,超微電極靈敏性高6倍之多,在干擾物部分,利用水中常見之陰離子SO42–、NO3–、CO32–分別添加10倍、50倍、100倍進行測試,SO42–、NO3–皆無干擾,但CO3–在50倍開始產生干擾,以中興湖水以及地下水做為真實樣品,添加聯胺偵測並計算其回收率,其值落於92%–105%之間。 綜觀以上結果,可得知我們利用材料之間的特殊金屬交換反應取代電鍍方法,簡化製程,製備出銅鈀合金,並進一步地利用超微電極作為基材,產生特殊的孔洞結構,實際應用上也證實具有合金特有的性質。
URI: http://hdl.handle.net/11455/90661
文章公開時間: 2018-07-14
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.