Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/90666
標題: Fabrication and application of electrochemical gas sensors based on metal nanoparticals-deposited screen-printed carbon ultramicroelectrodes
奈米金屬修飾超微碳電極於電化學氣體感測器之研發與應用
作者: 陳韋仲
Wei-Chung Chen
關鍵字: gas sensor
electrochemistry
ultramicroelectrode
氣體感測器
超微電極
電化學
引用: 第四章 [1] J. P. Kehrer, Toxicology 2000, 149, 43. [2] Hydrogen peroxide, European Union Risk Assessment Report 2003, 38, 1. [3] M. E. Abbas, W. Luo, L. Zhu, J. Zou and H. Tang, Food Chem. 2010, 120, 327. [4] O. Demirkol, A. C. Mehmetoglu, Z. Qiang, N. Ercal and C. Adams, J. Arg.Food Chem. 2008, 56, 10414. [5] W. Luo, M. E. Abbas, L. Zhu, K. Deng and H. Tang, Anal. Chim. Acta 2008, 629, 1. [6] X. Wang and K. Jiao, Anal. Chim. Acta 2010, 664, 34. [7] M. Liang and L.-H. Guo, Environ. Sci. Technol. 2007, 41, 658. [8] S. Jia, M. Liang and L.-H. Guo, J. Phys. Chem. B 2008, 112, 4461. [9] E. Brillas, I. Sires and M. A. Oturan, Chem. Rev. 2009, 109, 6570. [10] B. Halliwell and J. M. C. Gutterridge, Free Radicals in Biology and Medicine, Clarendon Press, Oxford, 2nd ed. 1989. [11] D. Huang, B. Ou and R. L. Prior, J. Agric. Food Chem. 2005, 53, 1841. [12] D. A. Stoyanovsky, Z. Melnkikov and A. I. Cederbaum, Anal. Chem. 1999, 71, 715. [13] Q. Xiang, J. Yu and P. K. Wong, J. Colloid Interf. Sci. 2011, 357, 163. [14] E. Kilinc, Talanta 2005, 65, 876. [15] D. Z. Suznjevic, F. T. Pastor, Z. Stanislava and S. Z. Gorjanovic, Talanta 2011, 85, 1398. [16] A. Mansouri, D. P. Makris and P. Kefalas, J. Pharm. Biomed. Anal. 2005, 39, 22. [17] A. Nikokavoura, D. Christodouleas, E. Yannakopoulou, K. Papadopoulos and A. C. Calokerinos, Talanta 2011, 84, 874. [18] C.P Huang, C. Dong, Z. Tang, Waste Mgmt. 1993, 13, 361. [19] E. Neyens, J. Baeyens, J. Hazard. Mater. 2003, 98, 33. [20] T. Rigg, W. Taylor, J. Weiss, J. Chem. Phys. 1954, 22, 575. [21] C. Walling, A. Goosen, J. Am. Chem. Soc. 1973, 95, 2987. [22] J. De Latt, H. Gallard, Environ. Sci. Technol. 1999, 33, 2726. [23] B.H.J. Bielski, D.E. Cablelli, R.L, Arudi, J. Phys. Chem. Soc. 1971, 93, 1041. [24] G. Cui, Z. Ye, J. Chen, G. Wang and J. Yuan, Talanta, 2011, 84, 971. [25] M. Liu, S. Liu, S.L. Peterson, M. Miyake and K.J. Liu, Mol. Cell. Biochem. 2002, 234, 379. [26] M. Kumamoto, T. Sonda, K. Nagayama and M. Tabata, Biosci. Biotechnol. Biochem. 2001, 65, 126. [27] E. Lipczynska-Kochany, G. Sprah, S. Harms, Chemosphere ,1995, 30, 9. 第五章 [1] 林天送, 科學發展, 2011, 461, 72. [2] C. Cantalini, H.T. Sun, M. Faccio, G. Ferri and M. Pelino, Sens. Actuators B 1995, 24, 673. [3] W. Raymond,F. Darbyshire, E. Saavedra, D. Christodoulou, I. Hanbauer, W. Cox, B. Grisham, F. Lavel, A. Cook, C. Krishna and A. Wink, Methods, 1995, 7, 48. [4] M.R. McCurdy, Y. Bakhirkin, G. Wysocki and F.K. Tittel, J. Biomed. Opt. 2007, 12, 034034. [5] K.C. Ho, W.T. Hung and J.C. Yang Sensors 2003, 3, 290. [6] D. N. Maynard, A. Barker, A. V. Mimotti, N. H. Peck, Adv. Agron. 1976, 28, 71. [7] World Health Organization, 1973, Toxicology Evaluation of Certain Food Additives with a Review of General Principles and Specifications, 17th Report of Joint FAO/WHO Expert Committee on Food Additives, FAO Nutrition Report Series, No. 53(Geneva). [8] C. K. Chow, C. B. Hong, Toxicology, 2002, 180, 195. [9] 衛生署食品藥物管理局-消費者資訊網對亞硝酸鹽之介紹 [10] M. J. Moorcroft, J. Davis, R. G. Compton, Talanta, 2001, 54, 785. [11] L. A. Ridnour, J. E. Sim, M. A. Hayward, D. A. Wink,S. M. Martin, G. R. Buettner, D. R. Spitz, Anal. Biochem., 2000, 281, 223. [12] H. Chen, Y. Fang, T. An, K. Zhu, J. Lu, Int. J. Environ.Anal. Chem., 2000, 76, 89. [13] F. Yang, E. Troncy, M. Francoeur, B. Vinet, P. Vinay,G. Czaika, G. Blaise, Clin. Chem., 1997, 43, 657. [14] Z. K. He, B. Fuhrmann, U. Spohn, Fres. J. Anal. Chem., 2000, 367, 264. [15] M. I. H. Helaleh, T. Korenaga, Microchem. J., 2000, 64, 241. [16] H. Li, C. J. Meininger, G. Y. Wu, J. Chromatogr. B., 2000, 746, 199. [17] J. P. Greiss, Ber. Dtsch. Chem. Ges., 1879, 12, 426. [18] 行政院衛生署「食品中亞硝酸鹽之檢驗方法」 [19] D. Tsikas, F.M. Gutzki, J.C. Fro‥lich, Fres. J. Anal. Chem., 1992, 342, 95. [20] D. Tsikas, S. Rossa, J. Sandmann, J.C. Fro‥lich, J.Chromatogr. B., 1999, 724, 199. [21] S. H. Lee, L. R. Field, Anal. Chem., 1984, 56, 2647. [22] A. Tanaka, N. Nose, H. Iwasaki, J. Chromatogr., 1982, 235, 173. [23] V. Rizzo, L. Montalbetti, A. L. Rozza, W. Bolzani, C. Porta, G. Balduzzi, E. Scoglio, R. Moratti, J. Chromatogr. A., 1998, 798, 103. [24] M. Lookabaugh, I. S. Krull, J. Chromatogr., 1988, 452, 295. [25] D. Tsikas, I. Fuchs, F. M. Gutzki, J. C. Fro‥lich, J. Chromatogr. B., 1998, 715, 441. [26] D. Tsikas, R. H. Bo‥ger, S. M. Bode-Bo‥ger, F. M. Gutzki, J. C. Fro‥lich, J. Chromatogr. B., 1994, 661, 185. [27] J. P. Landers, Clin. Chem., 1995, 41, 495. [28] P. N. Bories, E. Scherman, L. Dziedzic, Clin. Biochem., 1999, 32, 9. [29] M. Duca, V. Kavvadia, P. Rodriguez, S. C. S. Lai, T. Hoogenboom, M. T. M. Koper, J. Electroanal. Chem., 2010, 649, 59. [30] D. Pletcher, M. Bertotti, j. Braz. Chem. Soc., 1997, 8, 391. [31] G. Zhao, K. Liu, S. Lin., G. Liang, X. Guo, Z. Zhang., Microchemical Acta. 2003, 144, 75. [32] B. Strehlitz, B. Grunsig, W. Schumacher, B. M. H. Kroneck., K. D. Vorlop, H. Kott, Anal. Chem., 1996, 68, 807. [33] Z. H. Dai, X. X. Xu, H. X. Ju, Anal. Bio., 2004, 332, 23. [34] X. Huang, Y. Li, Y. Chen, L. Wang, Sens. Acuators B., 2008, 134, 780. [35] K. C. Ho, W. T. Hung, J. C. Yang, Sensors, 2003,3, 290. [36] P. Wang, F. Li, X. Huang, Y. Li, L. Wang, Electrochem. Commun., 2008, 10, 195. [37] S. Wang, Y. Yin, X. Lin, Electrochem. Commun., 2004, 6, 259. [38] K. Zhao, H. Song, S. Zhuang, L. Dai, P. He, Y. Fang, Electrochem. Commun., 2007, 9, 65. [39] N. Zhu, Q. Xu, S. Li, H. Gao, Electrochem. Commun., 2009, 11, 2308. [40] S. Rajesh, A. K. Kanugula, K. Bhargava, G. Ilavazhagan, S. Kotamraju, C. Karunakaran, Biosens. Bioelectron., 2010, 26, 689. [41] Z. Yuan, H. Xian, F. Li, S. Wu, Q. Lu, Y. Li, L. Wang, Electrochim. Acta., 2010, 55, 5905. [42] H. Wang, X. Bo, J. Nai., L. Wang, L. Guo, J. Electroanal. Chem., 2011, 662, 281. 第六章 [1] L.C. Meher, D.V. Sagar, S.N. Naik, Renew Sust. Energ. Rev. 10 (2006) 248. [2] M. Mittelbach, Bioresour. Technol. 56 (1996) 7. [3] A. Neher, et al., USPTO Patent Full, Patent 5,387,720 (1995). [4] ANP, Agencia Nacional de Petroleo. Resolucao no. 7 de 19 de Marco de 2008, Regulamento Tecnico ANP no. 1/2008, Brasilia, Diario Oficial da Uniao. [5] P. Bondiolli, C. Mariani, A. Lanzani, E. Fedeli, S. Veronese, Riv. Ital. Sostanze Gr. 69 (1992) 7. [6] J. Bailer, K. Hueber, Fresenius J. Anal. Chem. 340 (1991) 186. [7] P. Lozano, N. Chirat, J. Graille, D. Pioch, Fresenius J. Anal. Chem. 354 (1996) 319. [8] L.C.G. Filho, G.A. Micke, J. Chromatogr. A 1154 (2007) 477. [9] C.-H. Chou, J.-L. Chang, J.-M. Zen, Sen. Actuat. B. 147(2) (2010) 669. [10] M. Watanabe, S. Motoo, J Electroanal. Chem. 60 (1975) 267. [11] H. A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, J. Phys. Chem. 97 (1993) 12020. [12] J. S. Spendelow, P.K. Babu, A. Wieckowski, Curr. Opin. Solid State Mater. Sci. 9 (2005) 37. [13] D. Zhao, B. Q. Xu, Angew. Chem. Int. Ed. 45 (2006) 4955. 第七章 [1] H. Wang, X. Bo, J. Nai., L. Wang, L. Guo, J. Electroanal. Chem. 2011, 662, 281. [2] X. Niu, M. Lan, C. Chen, H. Zhao, Talanta 2012, 99, 1062. [3] N. Toshima, M. Harada, T. Yonezawa, K. Kushihashi, K. Asakura, J. Phys. Chem. 1991, 95, 7448.
摘要: In this study, we have successfully developed novel electrochemical gas sensors based on electrochemical deposition of high catalytic metal particles (e.g., Pt and Pd) on the surface of screen-printed carbon ultramicroelectrode (SPUME). A more efficient mass transfer effect of ultramicroelectrode is facilitates for the electrochemical reduction of metals. Homogeneous size and distribution of Pt nanoparticles can be easily decorated at the surface of carbon ultramicroelectrode without either protective or capped agents for catalysis. The as-prepared Pt/SPUME was then applied for the development of sensitive nitric oxide, formaldehyde, formic acid and hydrogen peroxide gas sensors. In addition, the system can also be applied to develop hydroxyl radical, glycerol and triglyceride sensors as well. As to H2O2 sensor, a highly selective hydroxyl radical (●OH) assay through the depletion of H2O2 as an indicator for iron-catalysed hydroxyl radical formation without any separation process and chemical probe was demonstrated. The proposed method successfully applied to evaluate the antioxidative activity of phenolic compounds. By using a reaction involving sulfuric acid and sodium nitrite, in-situ evaluation of NO gas can be carried out in an inert atmosphere and sensing in the gas phase. This new approach was successfully demonstrated for the determination of nitrite in food samples such as sausage and vegetable by using the standard addition method and the results were compared with the classical spectroscopic method to verify the analytical applicability of the method. These promising analytical performances open new possibilities for easy and selective determination of nitrite and nitric oxide in environmental and biological samples. Glycerol sensor in bio-diesel purity identification used a AuRuPt modified electrode to avoid being poison with CO adsorption on the surface of Pt and prevent the interferences from methanol and ethanol at the same time. By using periodate (HIO4-) as oxidant to decomposed glycerol into formaldehyde (HCHO) and formic acid (HCOOH), we can collect the oxidation current by amperometry of HCHO and HCOOH. Finally, we discussed the fabrication of PdPt bimetal on SPUME and its property. The PdPt bimetal oxidizes nitric acid very well than pure Pt and favors the development of highly sensitive gas sensor.
本論文以奈米金屬修飾超微電極研發電化學式氣體感測器,成功開發氫氧自由基、一氧化氮、超微量亞硝酸鹽及甘油感測器。藉由超微電極特有之邊緣擴散效應,產生電子快速移動及物質傳遞快速之現象,並且利用超微電極本身具有低背景電流及低電解質需求的特性,有利於修飾奈米金屬於超微電極表面進而增進催化物質活性及反應活性面積,成功修飾高分散性、顆粒尺寸均一、高催化性之奈米金屬顆粒於超微電極表面,修飾上固態電解質Nafion便完成偵測元件,最後搭配偵測系統容槽即完成高靈敏度及高選擇性之氣體感測器。本論文實驗部分含四個章節,第一部分為利用費頓反應消耗雙氧水產生氫氧自由基,可觀察到雙氧水之訊號變化,當溶液中含有不同種類之抗氧化物時,間接觀察氫氧自由基消耗之現象而辨別抗氧化物之抗氧化能力強弱。第二部分為偵測一氧化氮氣體,利用鉑金屬催化可偵測一氧化氮之氧化訊號,具良好線性與重複性,並且可應用於亞硝酸鹽類之偵測,亞硝酸鹽類於酸性環境還原成一氧化氮氣體,可應用於食品加工添加物亞硝酸鹽類偵測及蔬菜中亞硝酸鹽類偵測,與比色法數據相符且相較下不需添加額外試劑,相對快速、簡便。第三部分為生質柴油中甘油含量檢測,首先利用過碘酸做為氧化劑,將甘油氧化為甲醛及甲酸,接著利用定電位安培法可收集甲醛與甲酸之訊號,此方法也可應用血液中三酸甘油酯之檢測。第四部分為鈀鉑雙金屬電極製備與性質探討,利用鈀鉑雙金屬協同效應可使一氧化氮催化性倍增,靈敏度極低,未來期望應用於細胞受刺激釋放一氧化氮之偵測等生醫領域。
URI: http://hdl.handle.net/11455/90666
文章公開時間: 2014-12-16
Appears in Collections:化學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.